Skip to main content
Log in

NITROGEN ASTRALENS: THEORETICAL INVESTIGATION OF THE STRUCTURE OF NOVEL HIGH-ENERGY NITROGEN ALLOTROPES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Structure and stability of framework molecules consisting of nitrogen atoms are analyzed. A novel class of such molecules, astralens, is proposed. Astralens are composed of several coalescent nanometer-long nanotubes. Depending on the form of the central part (core), astralens can be classified as cubic, hexagonal, and tetrahedral. Their structure and electronic properties are determined using the density functional theory. It is shown that covalent crystals, novel allotropic forms of nitrogen, can be formed on the basis of astralens. The crystals have Pm3m, P6/m, and Fd3m symmetries and are semiconductors with energy band gaps varying from 0.32 eV to 2.04 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. D. Chakraborty, R. P. Muller, S. Dasgupta, and W. A. Goddard. J. Phys. Chem. A, 2000, 104, 2261, DOI: 10.1021/jp9936953.

    Article  CAS  Google Scholar 

  2. D. Chakraborty, R. P. Muller, S. Dasgupta, and W. A. Goddard. J. Phys. Chem. A, 2001, 105, 1302, DOI: 10.1021/jp0026181.

    Article  CAS  Google Scholar 

  3. E. F. C. Byrd, G. E. Scuseria, and C. F. Chabalowski. J. Phys. Chem. B, 2004, 108, 13100, DOI: 10.1021/jp0486797.

    Article  CAS  Google Scholar 

  4. C. Yongjin, B. Shuhong, and J. Matthey. Technol. Rev., 2019, 63, 51, DOI: 10.1595/205651319X15421043166627.

    Article  CAS  Google Scholar 

  5. V. A. Basiuk and M. Bassiouk. J. Comput. Theor. Nanosci., 2008, 5, 1205, DOI: 10.1166/jctn.2008.2555.

    Article  CAS  Google Scholar 

  6. D. L. Strout. J. Chem. Theory Comput., 2005, 1, 561, DOI: 10.1021/ct050067i.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D. L. Strout. J. Phys. Chem. A, 2006, 110, 4089, DOI: 10.1021/jp0563540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A. Rani and R. Kumar. AIP Conf. Proc., 2014, 1591, 580, DOI: 10.1063/1.4872681.

  9. K. P. Katin and M. M. Maslov. Phys. E, 2018, 96, 6, DOI: 10.1016/j.physe.2017.09.021.

    Article  CAS  Google Scholar 

  10. H. Sharma, I. Garg, K. Dharamvir, and V. K. Jindal. J. Phys. Chem. A, 2009, 113, 9002, DOI: 10.1021/jp901969z.

    Article  CAS  PubMed  Google Scholar 

  11. K. P. Katin and M. M. Maslov. Russ. J. Phys. Chem. B, 2011, 5, 770, DOI: 10.1134/S1990793111090181.

    Article  CAS  Google Scholar 

  12. B. M. Gimarc and M. Zhao. Coord. Chem. Rev., 1997, 158, 385, DOI: 10.1016/s0010-8545(97)90067-9.

    Article  CAS  Google Scholar 

  13. K. M. Dunn and K. Morokuma. J. Chem. Phys., 1995, 102, 4904, DOI: 10.1063/1.469538.

    Article  CAS  Google Scholar 

  14. M. Tobita and R. J. Bartlett. J. Phys. Chem. A, 2001, 105, 4107, DOI: 10.1021/jp003971+.

  15. R. Engelke and J. R. Stine. J. Phys. Chem., 1990, 94, 5689, DOI: 10.1021/j100378a018.

    Article  CAS  Google Scholar 

  16. M. L. Leininger, C. D. Sherrill, and H. F. Schaefer. J. Phys. Chem., 1995, 99, 2324, DOI: 10.1021/j100008a013.

    Article  CAS  Google Scholar 

  17. F. J. Owens. J. Mol. Struct.: THEOCHEM, 2003, 623, 197, DOI: 10.1016/S0166-1280(02)00695-4.

    Article  CAS  Google Scholar 

  18. L. Y. Bruney, T. M. Bledson, and D. L. Strout. Inorg. Chem., 2003, 42, 8117, DOI: 10.1021/ic034696j.

    Article  CAS  PubMed  Google Scholar 

  19. D. L. Strout. J. Phys. Chem. A, 2004, 108, 10911, DOI: 10.1021/jp046496e.

    Article  CAS  Google Scholar 

  20. S. E. Sturdivant, F. A. Nelson, and D. L. Strout. J. Phys. Chem. A, 2004, 108, 7087 DOI: 10.1021/jp0481153.

    Article  CAS  Google Scholar 

  21. T. K. Ha, O. Suleimenov, and M. T. Nguyen. Chem. Phys. Lett., 1999, 315, 327, DOI: 10.1016/S0009-2614(99)01271-3.

    Article  CAS  Google Scholar 

  22. D. L. Strout. J. Phys. Chem. A, 2004, 108, 2555, DOI: 10.1021/jp0378889.

    Article  CAS  Google Scholar 

  23. L. J. Wang and M. Z. Zgierski. Chem. Phys. Lett., 2003, 376, 698, DOI: 10.1016/S0009-2614(03)01058-3.

    Article  CAS  Google Scholar 

  24. H. Zhou, N. B. Wong, G. Zhou, and A. Tian. J. Phys. Chem. A, 2006, 110, 3845, DOI: 10.1021/jp056435w.

    Article  CAS  PubMed  Google Scholar 

  25. Q. Guo, B. He, and H. Zhou. J. Mol. Graph. Model., 2020, 96, 107508, DOI: 10.1016/j.jmgm.2019.107508.

    Article  CAS  PubMed  Google Scholar 

  26. H. Zhou and N. B. Wong. Chem. Phys. Lett., 2007, 449, 272, DOI: 10.1016/j.cplett.2007.10.076.

    Article  CAS  Google Scholar 

  27. K. S. Grishakov, K. P. Katin, M. A. Gimaldinova, and M. M. Maslov. Lett. Mater., 2019, 9, 366, DOI: 10.22226/2410-3535-2019-3-366-369.

    Article  Google Scholar 

  28. M. T. Nguyen. Coord. Chem. Rev., 2003, 244, 93, DOI: 10.1016/S0010-8545(03)00101-2.

    Article  CAS  Google Scholar 

  29. N. N. Degtyarenko, K. P. Katin, and M. M. Maslov. Phys. Solid State, 2014, 56, 1467, DOI: 10.1134/S1063783414070099.

    Article  CAS  Google Scholar 

  30. K. P. Katin, M. B. Javan, A. I. Kochaev, A. Soltani, and M. M. Maslov. ChemistrySelect, 2019, 4, 9659, DOI: 10.1002/slct.201902583.

    Article  CAS  Google Scholar 

  31. K. P. Katin and M. M. Maslov. J. Phys. Chem. Solids, 2017, 108, 82, DOI: 10.1016/j.jpcs.2017.04.020.

    Article  CAS  Google Scholar 

  32. M. A. Gimaldinova, M. M. Maslov, and K. P. Katin. CrystEngComm, 2018, 20, 4336, DOI: 10.1039/c8ce00763b.

    Article  CAS  Google Scholar 

  33. D. Laniel, G. Geneste, G. Weck, M. Mezouar, and P. Loubeyre. Phys. Rev. Lett., 2019, 122, 066001, DOI: 10.1103/PhysRevLett.122.066001.

    Article  CAS  PubMed  Google Scholar 

  34. D. Laniel, B. Winkler, T. Fedotenko, A. Pakhomova, S. Chariton, V. Milman, V. Prakapenka, L. Dubrovinsky,

    Article  CAS  PubMed  Google Scholar 

  35. C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37, 758, DOI: 10.1103/physrevb.37.785.

    Article  CAS  Google Scholar 

  36. A. D. Becke. J. Chem. Phys., 1993, 98, 5648, DOI: 10.1063/1.464913.

    Article  CAS  Google Scholar 

  37. J. A. Montgomery, M. J. Frisch, J. W. Ochterski, and G. A. Petersson. J. Chem. Phys., 1999, 110, 2822, DOI: 10.1063/1.477924.

    Article  CAS  Google Scholar 

  38. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga,

    Article  CAS  Google Scholar 

  39. Chemcraft - graphical software for visualization of quantum chemistry computations, https://www.chemcraftprog.com (accessed Oct 12, 2020).

  40. R. G. Parr, L. V. Szentpály, and S. Liu. J. Am. Chem. Soc., 1999, 121, 1922, DOI: 10.1021/ja983494x.

    Article  CAS  Google Scholar 

  41. R. G. Pearson. Proc. Natl. Acad. Sci., 1986, 83, 8440, DOI: 10.1073/pnas.83.22.8440.

    Article  CAS  Google Scholar 

  42. R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke. J. Chem. Phys., 1977, 68, 3801, DOI: 10.1063/1.436185.

    Article  CAS  Google Scholar 

  43. P. Geerlings and F. De Proft. Phys. Chem. Chem. Phys., 2008, 10, 3028, DOI: 10.1039/b717671f.

    Article  CAS  PubMed  Google Scholar 

  44. E. G. Lewars. Computational Chemistry. Springer: Netherlands, 2011.

  45. J. P. Perdew and W. Yue. Phys. Rev. B, 1986, 33, 8800, DOI: 10.1103/PhysRevB.33.8800.

    Article  CAS  Google Scholar 

  46. J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 1996, 77, 3865, DOI: 10.1103/PhysRevLett.77.3865.

    Article  CAS  PubMed  Google Scholar 

  47. W. C. Ermler and A. D. McLean. J. Chem. Phys., 1980, 73, 2297, DOI: 10.1063/1.440379.

    Article  CAS  Google Scholar 

  48. K. Hu, M. Wu, S. Hinokuma, T. Ohto, M. Wakisaka, J. Fujita, and Y. Itoa. J. Mater. Chem., A, 2019, 7, 2156, DOI: 10.1039/c8ta11250a.

    Article  CAS  Google Scholar 

  49. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal. J. Phys. Condens. Matter, 2002, 14, 2745, DOI: 10.1088/0953-8984/14/11/302.

    Article  CAS  Google Scholar 

  50. K. P. Katin, V. B. Merinov, A. L. Kochev, Savas Kaya, and M. M. Maslov. Computation, 2020, 8, 91, DOI: 10.3390/computation8040091

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Merinov.

Ethics declarations

The author declares that he has no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 5, pp. 711-721.https://doi.org/10.26902/JSC_id72841

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merinov, V.B. NITROGEN ASTRALENS: THEORETICAL INVESTIGATION OF THE STRUCTURE OF NOVEL HIGH-ENERGY NITROGEN ALLOTROPES. J Struct Chem 62, 661–670 (2021). https://doi.org/10.1134/S0022476621050012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621050012

Keywords

Navigation