Skip to main content
Log in

METHODS TO DETERMINE CRYSTAL LATTICE PARAMETERS OF OPAL-LIKE STRUCTURES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Series of high-quality spherical poly(methyl methacrylate) particles with a polydispersity less than 5% are prepared by chain-growth emulsifier-free controlled radical emulsion polymerization of methyl methacrylate in water. The average diameters in the series varied from 237 nm to 447 nm. The physico-chemical properties of obtained submicrospheres can be varied to make them more stable and stronger by a modified classical synthesis technology whereby 4-10 vol.% of dispersion medium is replaced by acetone. 2D and 3D photonic crystal structures, opals, are prepared from poly(methyl methacrylate) submicrospheres. The crystal structure of the opals is studied by IR spectroscopy and scanning electron microscopy. According to the spectroscopic data, the poly(methyl methacrylate) particles contain significant amounts of water whose evaporation leads to the shrinkage of the spheres. The stereoregularity of the synthesized polymer is studied, the glass-transition temperatures of obtained samples are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. M. A. Boles, M. Engel, and D. V. Talapin. Chem. Rev., 2016, 116, 11220.

    Article  CAS  PubMed  Google Scholar 

  2. O. V. Shabanova, M. A. Korshunov, I. V. Nemtsev, and A. V. Shabanov. Nanotechnol. Russ., 2016, 11, 633.

    Article  CAS  Google Scholar 

  3. I. V. Nemtsev, O. V. Shabanova, N. P. Shestakov, A. V. Cherepakhin, and V. Y. Zyryanov. Appl. Phys., A, 2019, 125, 738.

    Article  CAS  Google Scholar 

  4. K. Hou, W. Ali, J. Lv, J. Guo, L. Shi, B. Han, X. Wang, and Z. Tang. J. Am. Chem. Soc., 2018, 140, 16446.

    Article  CAS  PubMed  Google Scholar 

  5. N. Berrahou, A. Mokaddem, B. Doumi, S. Hiadsi, N. Beldjoudi, and A. Boutaous. Polym. Bull., 2016, 73, 3007.

    Article  CAS  Google Scholar 

  6. F. Adams, P. Pahl, and B. Rieger. Chem. - Eur. J., 2018, 24, 509.

    Article  CAS  PubMed  Google Scholar 

  7. Y. Chen, L. Zhang, and G. Chen. Electrophoresis, 2008, 29, 1801.

    Article  CAS  PubMed  Google Scholar 

  8. C. Bouzigues, T. Gacoin, and A. Alexandrou. ACS Nano, 2011, 5, 8488.

    Article  CAS  PubMed  Google Scholar 

  9. S. Lazzari, D. Moscatelli, F. Codari, M. Salmona, M. Morbidelli, and L. Diomede. J. Nanopart. Res., 2012, 14, 920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. W.-K. Kuo, H.-P. Weng, J.-J. Hsu, and H. Yu. Appl. Sci., 2016, 6, 67.

    Article  CAS  Google Scholar 

  11. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur. Nature, 1998, 394, 251.

    Article  CAS  Google Scholar 

  12. A. Bearzotti, A. MacAgnano, S. Pantalei, E. Zampetti, I. Venditti, I. Fratoddi, and M. Vittoria Russo. J. Phys. Condens. Matter, 2008, 20, 474207.

    Article  CAS  Google Scholar 

  13. K. Gipson, K. Stevens, P. Brown, and J. Ballato. J. Spectrosc., 2015, 2015, 9.

    Article  CAS  Google Scholar 

  14. I. Venditti. Materials, 2017, 10, 97.

    Article  CAS  PubMed Central  Google Scholar 

  15. H. Hashim, N. I. Adam, N. H. M. Zaki, Z. S. Mahmud, C. M. S. Said, M. Z. A. Yahya, and A. M. M. Ali. In: CSSR 2010-2010 International Conference on Science and Social Research: Conf. Proc., Kuala Lumpur, Malaysia, 2010. Piscataway, N.J.: IEEE, 2010, 485-488.

  16. G. Bin Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin. Sens. Actuators, B, 2001, 75, 142.

    Article  CAS  Google Scholar 

  17. L. Xu, C. Aumaitre, Y. Kervella, G. Lapertot, C. Rodríguez-Seco, E. Palomares, R. Demadrille, and P. Reiss. Adv. Funct. Mater., 2018, 28, 1706291.

    Article  CAS  Google Scholar 

  18. X. Huang, S. Han, W. Huang, and X. Liu. Chem. Soc. Rev., 2013, 42, 173.

    Article  CAS  PubMed  Google Scholar 

  19. H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, and C. J. Brabec. Adv. Mater., 2011, 23, 2675.

    Article  CAS  PubMed  Google Scholar 

  20. B. Shao, Z. Yang, Y. Wang, J. Li, J. Yang, J. Qiu, and Z. Song. ACS Appl. Mater. Interfaces, 2015, 7, 25211.

    Article  CAS  PubMed  Google Scholar 

  21. D. Bi, C. Yi, J. Luo, J.D. Décoppet, F. Zhang, S.M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel. Nat. Energy, 2016, 1, 16142.

  22. M. K. Assadi, H. Hanaei, N. M. Mohamed, R. Saidur, S. Bakhoda, R. Bashiri, and M. Moayedfar. Appl. Phys. A: Mater. Sci. Process., 2016, 122, 821.

    Article  CAS  Google Scholar 

  23. M. Perween, D. B. Parmar, G. R. Bhadu, and D. N. Srivastava. Analyst, 2014, 139, 5919.

    Article  CAS  PubMed  Google Scholar 

  24. J. H. Sung, H. S. Kim, H. J. Jin, H. J. Choi, and I. J. Chin. Macromolecules, 2004, 37, 9899.

    Article  CAS  Google Scholar 

  25. L. Zhang, Y. Ren, S. Peng, D. Guo, S. Wen, J. Luo, and G. Xie. Nanoscale, 2019, 11, 8237.

    Article  CAS  PubMed  Google Scholar 

  26. X. Wang, P. Wang, Y. Jiang, Q. Su, and J. Zheng. Compos. Sci. Technol., 2014, 104, 1.

    Article  CAS  Google Scholar 

  27. I. V. Nemtsev, O. V. Shabanova, and A. V. Shabanov. Sib. Zh. Nauki Tekhnol., 2012, 1(41), 126.

  28. M. M. Gafurov and K. S. Rabadanov. J. Struct. Chem., 2009, 50(2), 246.

    Article  CAS  Google Scholar 

  29. I. V. Nemtsev, I. A. Tambasov, A. A. Ivanenko, and V. Y. Zyryanov. Photonics Nanostruct. - Fundam. Appl., 2018, 28, 37.

    Article  Google Scholar 

  30. R. D′Amato, I. Venditti, M. V. Russo, and M. Falconieri. J. Appl. Polym. Sci., 2006, 102, 4493.

    Article  CAS  Google Scholar 

  31. R. De Angelis, I. Venditti, I. Fratoddi, F. De Matteis, P. Prosposito, I. Cacciotti, L. D′Amico, F. Nanni, A. Yadav, M. Casalboni, and M. V. Russo. J. Colloid Interface Sci., 2014, 414, 24.

    Article  CAS  PubMed  Google Scholar 

  32. O. V. Shabanova, A. V. Shabanov, and I. V. Nemtsev. Sib. Zh. Nauki Tekhnol., 2011, 4(37), 201.

  33. N. Matsuura, S. Yang, P. Sun, and H. E. Ruda. Appl. Phys. A: Mater. Sci. Process., 2005, 81, 379.

    Article  CAS  Google Scholar 

  34. E. V. Morozov, O. V. Shabanova, V. F. Pavlov, and O. V. Falaleev. Abstracts of Papers: 11th International Conference on Magnetic Resonance Microscopy (ICMRM), Beijing, China, Aug 14-18, 2011. China, 2011. NMR/MRI 66.

  35. H. G. Campos, K. P. Furlan, D. E. Garcia, R. Blick, R. Zierold, M. Eich, D. Hotza, and R. Janssen. Int. J. Ceram. Eng. Sci., 2019, 1, 68.

    Article  CAS  Google Scholar 

  36. K. T. Hufziger, A. B. Zrimsek, and S. A. Asher. ACS Appl. Nano Mater., 2018, 1, 7016.

    Article  CAS  Google Scholar 

  37. Q. Ye, Z. Zhang, H. Jia, W. He, and X. Ge. J. Colloid Interface Sci., 2002, 253, 279.

    Article  CAS  PubMed  Google Scholar 

  38. K. O′Driscoll and R. A. Sanayei. Macromolecules, 1991, 24, 4479.

    Article  Google Scholar 

  39. S. Ogden, L. Klintberg, G. Thornell, K. Hjort, and R. Bodén. Microfluid. Nanofluidics, 2014, 17, 53.

    Article  CAS  Google Scholar 

  40. D. Marsh. Biochim. Biophys. Acta, Biomembr., 2010, 1798, 40.

    Article  CAS  Google Scholar 

  41. L. Chang and E. M. Woo. Polym. Chem., 2010, 1, 198.

    Article  CAS  Google Scholar 

  42. K. H. Liao, S. Kobayashi, H. Kim, A. A. Abdala, and C. W. Macosko. Macromolecules, 2014, 47, 7674.

    Article  CAS  Google Scholar 

  43. L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling. Appl. Phys. Lett., 2008, 93, 221105.

    Article  CAS  Google Scholar 

  44. V. L. Furer. J. Struct. Chem., 1995, 36(2), 321.

    Article  Google Scholar 

  45. K. Nakanishi. J. Pharm. Sci., 1963, 52, 716.

Download references

Funding

The research was carried out within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (theme No. AAAA-A18-118041990041-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Nemtsev.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 4, pp. 684-693.https://doi.org/10.26902/JSC_id71171

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemtsev, I.V., Shabanova, O.V., Tambasov, I.A. et al. METHODS TO DETERMINE CRYSTAL LATTICE PARAMETERS OF OPAL-LIKE STRUCTURES. J Struct Chem 62, 641–650 (2021). https://doi.org/10.1134/S0022476621040168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621040168

Keywords

Navigation