Skip to main content
Log in

CHARACTERIZATION OF INTERFACE LAYERS OF A SOLID SOLUTION FORMED DURING THE GROWTH OF A CARBIDE LAYER ON SILICON FROM HYDROGEN CONTAINING COMPOUNDS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The work discusses mechanisms of formation, crystal structure, some features of defect formation, and composition of the solid carbide film formed from a hydrocarbon and hydrides on the Si surface at low (< 900 °C) growth temperatures. It is shown that a system of macrodefects and a subsurface structure similar to porous silicon are formed under a carbide layer as a result of long-term growth of thick carbide layers. The presence of a solid solution transition layer between the carbide layer and the silicon substrate is manifested in the structure of luminescence spectra of studied structures in the near IR region. The most probable mechanisms of observed radiative transitions were established by analysing the temperature behavior of spectral lines and calculating the layer distribution of structures of light-excited non-equilibrium charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. B. Tillack, D. Knoll, B. Heinemann, K.-E. Ehwald, H. Risker, R. Barth, P. Schley, and W. Winkler. In: STS: SiGe/SOI/Strained Si: From Growth to device Properties. SEMICON: Munich, Germany, 2004.

  2. K. W. Ang, K. J. Chui, V. Bliznetsov, C. H. Tung, A. Du, N. Balasubramanian, G. Samudra, M. F. Li, and Y. C. Yeo. Appl. Phys. Lett., 2005, 86, 093102.

    Article  CAS  Google Scholar 

  3. A. A. Lebedev, A. M. Ivanov, and N. B. Strokan. Fiz. Tekh. Poluprovodn., 2004, 38, 129.

  4. W. T. Hsieh, Y. K. Fang, W. J. Lee, C. W. Ho, K. H. Wu, and J. J. Ho. Electron. Lett., 2000, 36, 1869.

    Article  CAS  Google Scholar 

  5. S. A. Kukuschkin, A. V. Osipov, and N. A. Feoktistov. Fiz. Tverd. Tela, 2014, 56, 1457.

  6. V. I. Vdovin, O. A. Kuznetsov, M. G. Milvidskii, L. K. Orlov, and T. G. Yugova. Kristallografiya, 1993, 38(4), 269.

  7. T. G. Yugova, V. I. Vdovin, M. G. Milvidskii, L. K. Orlov, V. A. Tolomasov, A. V. Potapov, and N. V. Abrosimov. Thin Solid Films, 1999, 336, 112.

    Article  CAS  Google Scholar 

  8. V. I. Vdovin, T. A. Torack, L. Fei, V. Ya. Reznik, M. G. Milvidskii, and R. Falster. Phys. Status Solidi C, 2007, 4, 3043.

    Article  CAS  Google Scholar 

  9. E. A. Steinman and H. G. Grimmeiss. Semicond. Sci. Technol., 1998, 13, 124.

    Article  CAS  Google Scholar 

  10. L. K. Orlov, A. V. Potapov, N. L. Ivina, E. A. Steinman, and V. I. Vdovin. Solid State Phenom., 1999, 69-70, 377.

    Article  CAS  Google Scholar 

  11. L. K. Orlov, Z. J. Horvath, N. L. Ivina, V. I. Vdovin, E. A. Steinman, M. L. Orlov, and Yu. A. Romanov. Opto-Electron. Rev., 2003, 11(2), 169.

  12. H. J. Osten. Thin Solid Films, 2000, 367, 101.

    Article  CAS  Google Scholar 

  13. O. P. Pchelaykov, A. I. Nikiforov, B. Z. Olshanetsky, S. A. Teys, A. I. Yakimov, and S. I. Chikichev. J. Phys. Chem., 2008, 69, 669.

    Article  CAS  Google Scholar 

  14. N. L. Ivina, M. L. Orlov, and N. S. Volkova. Int. J. Nanosci., 2019, 19(2), 19400234.

  15. A. Severino, G. D′Arrigo, C. Bongiorno, S. Scalese, F. La Via, and G. Foti. J. Appl. Phys., 2007, 102, 023518.

    Article  CAS  Google Scholar 

  16. H. Nakazawa, D. Suzuki, T. Narita, K. Meguro, and M. Tsuchiya. J. Cryst. Growth, 2015, 418, 52.

    Article  CAS  Google Scholar 

  17. C. Zgheib, L. E. McNeil, P. Masri, C. Forster, F. M. Morales, T. Stauden, O. Ambacher, and J. Pezoldt. Appl. Phys. Lett., 2006, 88, 211909.

    Article  CAS  Google Scholar 

  18. Yu. Narita, T. Inubushi, M. Harashima, K. Yasui, and T. Akahane. Appl. Surf. Sci., 2003, 216, 575.

  19. L. K. Orlov, V. I. Vdovin, and N. L. Ivina. Phys. Solid State, 2019, 61, 1263.

    Article  CAS  Google Scholar 

  20. L. K. Orlov, V. I. Vdovin, N. L. Ivina, E. A. Steinman, Y. N. Drozdov, and M. L. Orlov. Crystals, 2020, 10, 491.

    Article  CAS  Google Scholar 

  21. L. K. Orlov, V. I. Vdovin, N. L. Ivina, E. A. Steinman, M. L. Orlov, Yu. N. Drozdov, and V. F. Petrova. J. Struct. Chem., 2014, 55, 1180.

    Article  CAS  Google Scholar 

  22. L. K. Orlov, Yu. N. Drozdov, V. B. Schevtsov, V. A. Bozhenkin, and V. I. Vdovin. Phys. Solid State, 2007, 49, 627.

    Article  CAS  Google Scholar 

  23. Proc. 13th Int. Autumn Meet. "Gettering and Defect Engineering in Semiconductor Technology". Berlin, 2011.

  24. C. Wen, Y. M. Wang, W. Wan, F. H. Li, J. W. Liang, and J. Zou. J. Appl. Phys., 2009, 106, 073522.

    Article  CAS  Google Scholar 

  25. F. M. Morales, S. I. Molina, D. Araujo, R. Carcia, V. Cimalla, and J. Pezoldt. Diamond Relat. Mater., 2003, 12, 1227.

  26. L. K. Orlov, E. A. Steinman, T. N. Smyslova, N. L. Ivina, and A. N. Tereshchenko. Phys. Solid State, 2012, 54, 706.

    Article  CAS  Google Scholar 

  27. V. Baranauskas, M. C. Tosin, A. C. Peterlevitz, H. J. Ceragiooli, and S. F. Durrant. Thin Solid Films, 2000, 377-378, 315.

    Article  CAS  Google Scholar 

  28. D. C. Houghton, G. C. Aers, N. L. Rowell, K. Brunner, W. Winter, and K. Eberl. Phys. Rev. Lett., 1997, 78, 2441.

    Article  CAS  Google Scholar 

  29. P. Boucaud, J. M. Lourtioz, F. H. Julien, P. Warren, and M. Dutoit. Appl. Phys. Lett., 1996, 69, 1734.

    Article  CAS  Google Scholar 

  30. O. G. Schmidt and K. Eberl. Phys. Rev. Lett., 1998, 80, 3396.

    Article  CAS  Google Scholar 

  31. R. Hartmann, U. Gennser, H. Sigg, and D. Grundmacher. Appl. Phys. Lett., 1998, 73, 1257.

    Article  CAS  Google Scholar 

  32. K. Eberl, K. Brunner, and W. Winter. Thin Solid Films, 1997, 294, 98.

    Article  CAS  Google Scholar 

  33. T. P. Sidiki, A. Ruhm, W.-X. Ni, G. V. Hansson, and C. M. S. Torres. J. Lumin., 1999, 80, 503.

    Article  CAS  Google Scholar 

  34. M. L. Orlov, N. L. Ivina, N. S. Volkova, and L. K. Orlov. Semiconductors, 2018, 52, 1129.

    Article  CAS  Google Scholar 

Download references

Funding

The final analysis of obtained results was funded by RFBR, project number  18-42-520062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Orlov.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 4, pp. 672-683.https://doi.org/10.26902/JSC_id71165

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, L.K., Vdovin, V.I., Drozdov, Y.N. et al. CHARACTERIZATION OF INTERFACE LAYERS OF A SOLID SOLUTION FORMED DURING THE GROWTH OF A CARBIDE LAYER ON SILICON FROM HYDROGEN CONTAINING COMPOUNDS. J Struct Chem 62, 630–640 (2021). https://doi.org/10.1134/S0022476621040156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621040156

Keywords

Navigation