Skip to main content
Log in

XRD, PDF, AND EXAFS STUDY OF THE PHASE COMPOSITION AND LOCAL STRUCTURE OF SUPPORTED RUTHENIUM-CESIUM CATALYSTS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Supported catalysts Ru/MgO, Ru–Cs+/MgO, Ru/γ-Al2O3, and Ru–Cs+/γ-Al2O3 are prepared by the impregnation method using RuOHCl3 and Cs2CO3 as precursor compounds, reduced in hydrogen at 450 °C, and characterized by XRD, PDF, and EXAFS. The phase composition and local structure of the active component are determined. In the case of MgO support, the structure of the cesium promoter corresponds to cesium oxides. In the case of γ-Al2O3 supported catalysts, ruthenium and cesium ions interact during the synthesis to form aluminates and solid solutions in the support structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. P. Moggi, G. Predieri, and A. Maione. Catal. Lett., 2002, 79, 7.

    Article  CAS  Google Scholar 

  2. F. Rosowski, A. Hornung, O. Hinrichsen, D. Herein, M. Muhler, and G. Ertl. Appl. Catal., A, 1997, 151, 443.

    Article  CAS  Google Scholar 

  3. Yu. V. Larichev, I. P. Prosvirin, D. A. Shlyapin, N. B. Shitova, P. G. Tsyrul′nikov, and V. I. Bukhtiyarov. Kinet. Catal., 2005, 46, 597.

    Article  CAS  Google Scholar 

  4. Yu. V. Larichev, B. L. Moroz, E. M. Moroz, V. I. Zaikovskii, S. M. Yunusov, E. S. Kaluzhnaya, V. B. Shur, and V. I. Bukhtiyarov. Kinet. Catal., 2005, 46, 891.

    Article  CAS  Google Scholar 

  5. V. A. Borisov, K. N. Iost, V. L. Temerev, P. A. Fedotova, Yu. V. Surovikin, A. B. Arbuzov, M. V. Trenikhin, and D. A. Shlyapin. Diamond Relat. Mater., 2020, 108, 107986.

    Article  CAS  Google Scholar 

  6. K. Aika, A. Ohya, A. Ozaki, Y. Inoue, and I. Yasumori. J. Catal., 1985, 92, 305.

  7. K. Aika, K. Shimazaki, Y. Hattori, A. Ohya, S. Ohshima, K. Shirota, and A. Ozaki. J. Catal., 1985, 92, 296.

  8. D. Szmigiel, W. Raróg-Pilecka, E. Miskiewicz, Z. Kaszkur, and Z. Kowalczyk. Appl. Catal., A, 2004, 264, 59.

    Article  CAS  Google Scholar 

  9. K. Aika, T. Takano, and S. Murata. J. Catal., 1992, 136, 126.

    Article  CAS  Google Scholar 

  10. Y. Niwa and K. Aika. J. Catal., 1996, 162, 138.

    Article  CAS  Google Scholar 

  11. Y. Kadowaki and K. Aika. J. Catal., 1996, 161, 178.

    Article  CAS  Google Scholar 

  12. Y. Niwa and K. Aika. Chem. Lett., 1996, 25, 3.

    Article  Google Scholar 

  13. Y. V. Larichev, B. L. Moroz, V. I. Zaikovskii, S. M. Yunusov, E. S. Kalyuzhnaya, V. B. Shur, and V. I. Bukhtiyarov. J. Phys. Chem., C, 2007, 111, 9427.

    Article  CAS  Google Scholar 

  14. Y. V. Larichev, D. A. Shlyapin, P. G. Tsyrul′nikov, and V. I. Bukhtiyarov. Catal. Lett., 2008, 120, 204.

    Article  CAS  Google Scholar 

  15. Y. V. Larichev. J. Phys. Chem., C, 2011, 115, 631.

    Article  CAS  Google Scholar 

  16. E. M. Moroz. Russ. Chem. Rev., 2011, 80, 293.

    Article  CAS  Google Scholar 

  17. E. M. Moroz. J. Struct. Chem., 2012, 53(Suppl.), S63.

    Article  CAS  Google Scholar 

  18. E. M. Moroz. Curr. Top. Catal., 2016, 12, 101.

  19. B. Ingham. Crystallogr. Rev., 2015, 21, 229.

    Article  Google Scholar 

  20. D. A. Keen. Crystallogr. Rev., 2020, 26(3), 143-201, DOI: 10.1080/0889311X.2020.1797708.

    Article  Google Scholar 

  21. T. Proffen and R. B. Neder. J. Appl. Crystallogr., 1997, 30, 171.

    Article  CAS  Google Scholar 

  22. X. Qiu, J. W. Thompson, and S. J. L. Billinge. J. Appl. Crystallogr., 2004, 37, 678.

    Article  CAS  Google Scholar 

  23. P. A. Piminov, G. N. Baranov, A. V. Bogomyagkov, D. E. Berkaev, V. M. Borin, V. L. Dorokhov, S. E. Karnaev, V. A. Kiselev, E. B. Levichev, O. I. Meshkov, S. I. Mishnev, S. A. Nikitin, I. B. Nikolaev, S. V. Sinyatkin, P. D. Vobly, K. V. Zolotarev, and A. N. Zhuravlev. Phys. Procedia, 2016, 84, 19.

    Article  CAS  Google Scholar 

  24. D. I. Kochubey. EXAFS-Spektr. Kataliz. (EXAFS-Spectrosc. Catal.) [in Russian]. Nauka: Novosibirsk, Russia, 1992.

  25. K. V. Klementev. J. Phys., D: Appl. Phys., 2001, 34, 209.

    Article  Google Scholar 

  26. N. Binsted, J. V. Campbell, S. J. Gurman, and P. C. Stephenson. EXCURV92 Program. SERC Daresbury Laboratory: Daresbury, UK, 1991.

  27. S. Murata and K. Aika. Appl. Catal., A, 1992, 82, 1.

    Article  CAS  Google Scholar 

Download references

Funding

The reported study was funded by RFBR, project number 19-05-50046, 18-03-01251.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Moroz.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 4, pp. 584-593.https://doi.org/10.26902/JSC_id71129

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moroz, E.M., Pakharukova, V.P., Kriventsov, V.V. et al. XRD, PDF, AND EXAFS STUDY OF THE PHASE COMPOSITION AND LOCAL STRUCTURE OF SUPPORTED RUTHENIUM-CESIUM CATALYSTS. J Struct Chem 62, 545–554 (2021). https://doi.org/10.1134/S0022476621040053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621040053

Keywords

Navigation