Skip to main content
Log in

THEORETICAL STUDY ON THE STRUCTURES AND GROWTH MECHANISMS OF Ag-RICH CLUSTERS: Ag(Ag2S)n AND Ag2(Ag2S)n (n = 1–6)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The Ag-rich clusters Ag(Ag2S)n and Ag2(Ag2S)n (n = 1-6) are studied by the genetic algorithm combined with the density functional theory method. The PBE0/Lanl2tz(Ag)/6-311G(d,p)(S) method is used to optimize the structures. The global minimum structures, HOMO and LUMO frontier orbitals, and increment mechanisms of the clusters are investigated. The S–Ag–S unit is present in the structure when n > 1 for Ag(Ag2S)n and Ag2(Ag2S)n (n = 1-6) clusters. The triangular Ag3S3 unit is found to be an elemental building block to construct Ag(Ag2S)n and Ag2(Ag2S)n (n = 3-6) clusters. The S–Ag–Ag–S unit is present in the structures of Ag(Ag2S)5 and Ag(Ag2S)6 clusters. Beginning from Ag(Ag2S), the increment progress is exothermic when one Ag2S molecule or Ag atom is added to the molecule. The structural evolution of the studied clusters follows an edge-to-face growth mechanism. As the clusters increase, the structures evolve from open to cage ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel. Phys. Chem. Chem. Phys., 2015, 17, 12466–12471.

  2. L. L.Han, X.-Y. Kuang, L.-P. Ding, P. Shao, Y.-Y. Jin, and H.-H. Li. J. Mol. Model., 2014, 20, 1–10.

  3. A. A. Lavrentiev, B. V. Gabrel′yan, I. Ya. Nikiforov, and V. B. Vorzhev. J. Struct. Chem., 2005, 46(5), 805–812.

  4. S. I. Sadovnikov, E. A. Kozlova, E. Y.Gerasimov, A. A. Rempel, and A. I. Gusev. Int. J. Hydrogen Energy, 2017, 42, 25258–25266.

  5. P. Chang, H. Cheng, W. Lin, X. Li, and F. Zhao. Chin. J. Catal., 2015, 36, 564–571.

  6. A. A. Rempel, S. I. Sadovnikov, G. Klinser, and W. Sprengel. JETP Lett., 2018, 107, 4–9.

  7. M. S. León-Velázquez, R. Irizarry, and M. E.Castro-Rosario. J. Phys. Chem. C, 2010, 114, 5839–5849.

  8. Z.-A. Nan, Y. Xiao, X.-Y. Liu, T. Wang, X.-L. Cheng, Y. Yang, Z. Lei, and Q.-M. Wang. Chem. Commun., 2019, 55, 6771–6774.

  9. B. Kim, C.-S. Park, M. Murayama Jr., and M. F. Hochella. Environ. Sci. Technol., 2010, 44, 7509–7514.

  10. M. Cui, J. K. Feng, M. F. Ge, S. F. Wang, C.-C. Sun, Z. Gao, and K. F. Ao. Chem. J. Chin. Univ., 1999, 20, 436–439.

  11. M. Cui, J. K. Feng, M. F. Ge, S. F.Wang, X. R.Huang, J.Z. Sun, and L. Peng. Acta Chim. Sin., 1999, 57, 672–679.

  12. X. He, Y. Wang, C.-Y. Gao, H. Jiang, and L. Zhao. Chem. Sci., 2015, 6, 654–658.

  13. Z. Wu, D.-E. Jiang, E. Lanni, M. E. Bier, and R. Jin. J. Phys. Chem. Lett., 2010, 1, 1423–1427.

  14. A. A. Bagatur′yants, A. A. Safonov, H. Stoll, and H.-J. Werner. J. Chem. Phys., 1998, 109, 3096–3107.

  15. C. Song and Z. Tian. J. Mol. Model., 2019, 25, 310.

  16. Y.-F. Li, Y. Li, Y. Li, J.-J. Tan, and H.-L. Li. Phys. B (Amsterdam, Neth.), 2016, 499, 29–37.

  17. D. J. Wales and J. P. Doye. J. Phys. Chem. A, 1997, 101, 5111–5116.

  18. J. Holland. Adaptation in Natural and Artificial Systems. Univ. of Michigan: Ann Arbor, 1975.

  19. S. Kazachenko and A. J. Thakkar. Chem. Phys. Lett., 2009, 476, 120–124.

  20. Z. Tian and L. Cheng. Phys. Chem. Chem. Phys., 2015, 17, 13421–13428.

  21. Z. Tian and L. Cheng. RSC Adv., 2016, 6, 30311–30319.

  22. Z. Tian, C. Song, C. Wang, Z. Liu, and R. Liao. Comput. Theor. Chem., 2019, 1157, 28–33.

  23. J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 1996, 77, 3865.

  24. J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria. Phys. Rev. Lett., 2003, 91, 146401.

  25. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, and J. Mantzaris. J. Chem. Phys., 1988, 89, 2193–2218.

  26. P. J. Hay and W. R.Wadt. J. Chem. Phys., 1985, 82, 299–310.

  27. A. McLean and G. Chandler. J. Chem. Phys., 1980, 72, 5639–5648.

  28. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. Gaussian 16, Revision C.01. Gaussian: Wallingford, CT, 2016.

  29. R. Dennington, T. A. Keith, J. M. Millam. GaussView, Version 6.1. Shawnee Mission, KS: Semichem, 2016.

  30. Y. Pei, N Shao, H. Li, D.-E. Jiang, and X. C. Zeng. ACS Nano, 2011, 5, 1441–1449.

  31. L. Shi, Z. Q. Zhou, T. Qu, D. C. Liu, X. M. Chen, B. Q. Xu, B. Yang, and Y. N. Dai. Mater. Sci. – Medžiagotyra, 2020, 26(2), 154–160.

Download references

Funding

This work was supported by 2017 Fuyang Municipal Government-Fuyang Normal College horizontal cooperation project (No. XDHX201719, P.R. China), the Scientific Research Starting Fund for doctor of the Fuyang Normal University, the National Science Foundation of China (No. 21701025, No. 21807012, China), the National Science Foundation of Anhui Province (1908085MB44, China), and the Natural Science Foundation of Higher Education Institutions in Anhui Province (KJ2019A0524, China). The calculations were carried out in the Theoretical and Computational Chemistry LAB, School of Chemistry and Materials Engineering, Fuyang Normal University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Song.

Ethics declarations

The authors declare that they have no conflict of interests.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Song, C. THEORETICAL STUDY ON THE STRUCTURES AND GROWTH MECHANISMS OF Ag-RICH CLUSTERS: Ag(Ag2S)n AND Ag2(Ag2S)n (n = 1–6). J Struct Chem 61, 1541–1550 (2020). https://doi.org/10.1134/S0022476620100066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620100066

Keywords

Navigation