Skip to main content
Log in

SYNTHESIS, CRYSTAL STRUCTURE, AND SUPRAMOLECULAR INTERACTIONS IN A BIS(TETRACHLOROCATECHOLATE) CHELATED MANGANESE(III) COMPLEX

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A mononuclear manganese(III) complex [DABH2][Mn2(Cl4Cat)2(H2O)2]·4DMF (1) (DAB = 1,4-diamino- butane, Cl4CatH2 = tetrachlorocatechol) is synthesized by a one-pot reaction involving manganese(II) chloride tetrahydrate and tetrachlorocatechol in a 1:2 molar ratio in the presence of 1,4-diaminobutane in a DMF-water mixture under aerobic conditions, and is structurally characterized. X-ray crystallography reveals that the complex anion is constructed with two tetrachlorocatecholate ligands coordinated to the manganese(III) center in equatorial positions, and two axial positions are occupied by two water molecules. The crystal packing of 1 is stabilized by complex networks of hydrogen bonding interactions in which oxygen atoms of coordinated tetrachlorocatecholate ligands and lattice DMF molecules serve as hydrogen bond acceptors, while the axially coordinated water molecules together with doubly protonated 1,4-diaminobutane act as hydrogen bond donors. The solid state packing of 1 is further stabilized by Cl⋯Cl halogen bonding interactions within tetracholorocatecholate units and the C–H⋯π and π⋯π interactions involving DMF solvates and aromatic rings of the tetracholorocatecholate ligands. The complex is further characterized by IR spectroscopy and cyclic voltammetry, and the results are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. D. L. J. Broere, R. Plessius, and J. I. van der Vlugt. Chem. Soc. Rev., 2015, 44, 6886.

  2. S. Ghorai and C. Mukherjee. Chem. Commun., 2012, 48, 10180.

  3. S. H. A. M. Leenders, R. Gramage-Doria, B. de Bruin, and J. N. H. Reek. Chem. Soc. Rev., 2015, 44, 433.

  4. V. Lyaskovskyy and B. de Bruin. ACS Catal., 2012, 2, 270.

  5. M. van der Meer, Y. Rechkemmer, I. Peremykin, S. Hohloch, J. van Slageren, and B. Sarkar. Chem. Commun., 2014, 50, 11104.

  6. O. R. Luca and R. H. Crabtree. Chem. Soc. Rev., 2013, 42, 1440.

  7. A. L. Smith, K. L. Hardcastle, and J. D. Soper. J. Am. Chem. Soc., 2010, 132, 14358.

  8. E. Evangelio, C. Rodriguez-Blanco, Y. Coppel, D. N. Hendrickson, J. P. Sutter, J. Campo, and D. Ruiz-Molina. Solid State Sci., 2009, 11, 793.

  9. T. Tezgerevska, K. G. Alley, and C. Boskovic. Coord. Chem. Rev., 2014, 268, 23.

  10. C. G. Pierpont. Coord. Chem. Rev., 2001, 216–217, 99.

  11. D. Kiriya, H. C. Chang, and S. Kitagawa. J. Am. Chem. Soc., 2008, 130, 5515.

  12. T. Tezgerevska, E. Rousset, R. W. Gable, G. N. L. Jameson, E. C. Sañudo, A. Starikova, and C. Boskovic. Dalton Trans., 2019, 48, 11674.

  13. F. Novio, J. Campo, and D. Ruiz-Molina. Inorg. Chem., 2014, 53, 8742.

  14. R. D. Schmidt, D. A. Shultz, J. D. Martin, and P. D. Boyle. J. Am. Chem. Soc., 2010, 132, 6261.

  15. T. M. Francisco, W. J. Gee, H. J. Shepherd, M. R. Warren, D. A. Shultz, P. R. Raithby, and C. B. Pinheiro. J. Phys. Chem. Lett., 2017, 819, 4774.

  16. D. N. Hendrickson and C. G. Pierpont. Top Curr. Chem., 2004, 234, 63.

  17. O. Sato, J. Tao, and Y. Z. Zhang. Angew. Chem., Int. Ed., 2007, 46, 2152.

  18. A. Dei and L. Sorace. Appl. Magn. Reson., 2010, 38, 139.

  19. J. Sedo, J. Saiz-Poseu, F. Busque, and D. Ruiz-Molina. Adv. Mater., 2013, 25, 653.

  20. P. Chaudhuri and K. Wieghardt. Prog. Inorg. Chem., 2001, 50, 151.

  21. R. H. Holm and E. I. Solomon. Chem. Rev., 2004, 104, 347.

  22. C. Mukherjee, T. Weyhermüller, E. Bothe, E. Rentschler, and P. Chaudhuri. Inorg. Chem., 2007, 46, 9895.

  23. W. I. Dzik, J. I. van der Vlugt, J. N. H. Reek, and B de Bruin. Angew. Chem., Int. Ed., 2011, 50, 3356.

  24. C. T. Lyons and T. D. Stack. Coord. Chem. Rev., 2013, 257, 528.

  25. S. E. Allen, R. R. Walvoord, R. Padilla-Salinas, and M. C. Kozlowski. Chem. Rev., 2013, 113, 6234.

  26. J. W. Steed and J. L. Atwood. Supramolecular Chemistry. Wiley & Sons: Chichester, 2000.

  27. D. A. Uhlenheuer, K. Petkau, and L. Brunsveld. Chem. Soc. Rev., 2010, 39, 2817.

  28. E. A. Meyer, R. K. Castellano, and F. Diederich. Angew. Chem., Int. Ed., 2003, 42, 1210.

  29. H. T. Chifotides and K. R. Dunbar. Acc. Chem. Res., 2013, 46, 894.

  30. H. Q. Peng, L. Y. Niu, Y. Z. Chen, L. Z. Wu, C. H. Tung, and Q. Z. Yang. Chem. Rev., 2015, 115, 7502.

  31. A. Harada, Y. Takashima, and M. Nakahata. Acc. Chem. Res., 2014, 47, 2128.

  32. A. K. Singh, D. S. Pandey, Q. Xua, and P. Braunstein. Coord. Chem. Rev., 2014, 270–271, 31.

  33. X. Ma and Y. Zhao. Chem. Rev., 2015, 115, 7794.

  34. A. S. Mahadevi and G. N. Sastry. Chem. Rev., 2013, 113, 2100.

  35. E. Mattia and S. Otto. Nat. Nanotechnol., 2015, 10, 111.

  36. A. V. Shishkina, V. V. Zhurov, A. I. Stash, M. V. Vener, A. A. Pinkerton, and V. G. Tsirelson. Cryst. Growth Des., 2013, 13, 816.

  37. S. K. Seth, P. Manna, N. J. Singh, M. Mitra, A. D. Jana, A. Das, S. R. Choudhury, T. Kar, S. Mukhopadhyay, and K. S. Kim. CrystEngComm, 2013, 15, 1285.

  38. P. Chakraborty, S. Purkait, S. Mondal, A. Bauzá, A. Frontera, C. Massera, and D. Das. CrystEngComm, 2015, 17, 4680.

  39. A. Panja, N. C. Jana, A. Bauzá, A. Frontera, and C. Mathonière. Inorg. Chem., 2016, 55, 8331.

  40. A. Panja, N. C. Jana, M. Patra, P. Brandão, C. E. Moore, D. M. Eichhorn, and A. Frontera. J. Mol. Catal. A, 2016, 412, 56.

  41. N. C. Jana, P. Brandão, and A. Panja. J. Inorg. Biochem., 2016, 159, 96.

  42. N. Shaikh, S. Goswami, A. Panja, X. Y. Wang, S. Gao, R. J. Butcher, and P. Banerjee. Inorg. Chem., 2004, 43, 5908.

  43. Bruker. SADABS. Madison, Bruker AXS Inc.: Wisconsin, USA, 2001.

  44. G. M. Sheldrick. Acta Crystallogr., Sect. A, 2015, 71, 3.

  45. G. M. Sheldrick. Acta Crystallogr., Sect. C, 2015, 71, 3.

  46. E. Evangelio, D. N. Hendrickson, and D. Ruiz-Molina. Inorg. Chim. Acta, 2008, 361, 3403.

  47. J. Dai, S. Kanegawa, Z. Li, S. Kang, and O. Sato. Eur. J. Inorg. Chem., 2013, 4150.

  48. T. S. Sheriff, M. Watkinson, M. Motevalli, and J. F. Lesin. Dalton Trans., 2010, 39, 53.

  49. S. Goswami, A. Panja, R. J. Butcher, N. Shaikh, and P. Banerjee. Inorg. Chim. Acta, 2011, 370, 311.

  50. C. J. Rolle III, K. I. Hardcastle, and J. D. Soper. Inorg. Chem., 2008, 47, 1892.

  51. N. Shaikh, A. Panja, S. Goswami, P. Banerjee, P. Vojtíšek, Y. Z. Zhang, G. Su, and S. Gao. Inorg. Chem., 2004, 43, 849.

  52. S. N. Brown. Inorg. Chem., 2012, 51, 1251.

  53. A. Panja, N. C. Jana, A. Bauzá, S. Adak, T. M. Mwania, D. M. Eichhorn, and A. Frontera. ChemistrySelect, 2017, 2, 2094.

  54. N. C. Jana, P. Brandão, A. Bauzá, A. Frontera, and A. Panja. J. Inorg. Biochem., 2017, 176, 77.

Download references

Funding

This work was supported by the Department of Science & Technology and Biotechnology, Government of West Bengal (grant No. 67(sanc./ST/P/S&T/15G-8/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Panja.

Ethics declarations

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahata, G., Panja, A. SYNTHESIS, CRYSTAL STRUCTURE, AND SUPRAMOLECULAR INTERACTIONS IN A BIS(TETRACHLOROCATECHOLATE) CHELATED MANGANESE(III) COMPLEX. J Struct Chem 61, 1475–1483 (2020). https://doi.org/10.1134/S0022476620090164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620090164

Keywords

Navigation