Skip to main content
Log in

Mono-, Bi-, and Trimetallic Catalysts for the Synthesis of Multiwalled Carbon Nanotubes Based on Iron Subgroup Metals

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Formation features of mono- (Fe, Co, Ni), bi- (Fe-Co, Fe-Ni, Co-Ni), and trimetallic (Fe-Co-Ni) catalysts for the synthesis of multiwalled carbon nanotubes (MWCNTs) prepared by the method of polymerized complex precursors are revealed. It is shown that initial bimetallic and trimetallic catalysts occur in a wide range of phases with spinel structure consisting of different mixed metal oxides (Me(II)Me(III)2O4). The influence of the active component composition and the catalyst activation conditions on their activity in the reaction of MWCNT synthesis is determined. MWCNTs with specific structural characteristics, a narrow diameter distribution and a relatively low degree of defectiveness, can be obtained by varying the composition of the catalyst active component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart. Science, 2013, 339, 535.

    Article  CAS  PubMed  Google Scholar 

  2. G. Rahman, Z. Najaf, A. Mehmood, S. Bilal, A. Shah, S. Mian, and G. Ali. J. Carbon Res., 2019, 5(1), 3.

    Article  CAS  Google Scholar 

  3. R. Rocha, O. Soares, J. Figueiredo, M. Pereira. J. Carbon Res., 2016, 2(3), 17.

    Article  Google Scholar 

  4. M. A. Kazakova, A. S. Andreev, A. G. Selyutin, A. V. Ishchenko, A. V. Shuvaev, V. L. Kuznetsov, O. B. Lapina, and J.-B. d’Espinose de Lacaillerie. Appl. Surf. Sci., 2018, 456, 657.

    Article  CAS  Google Scholar 

  5. M. A. Kazakova, A. G. Selyutin, N. V. Semikolenova, A. V. Ishchenko, S. I. Moseenkov, and M. A. Matsko, V. A. Zakharov, V. L. Kuznetsov. Compos. Sci. Technol., 2018, 167, 148.

    Article  CAS  Google Scholar 

  6. J. Cho, A. R. Boccaccini, and M. S. P. Shaffer. J. Mater. Sci., 2009, 44, 1934.

    Article  CAS  Google Scholar 

  7. E. Neubauer, M. Kitzmantel, M. Hulman, and P. Angerer. Compos. Sci. Technol., 2010, 70, 2228.

    Article  CAS  Google Scholar 

  8. Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis. Prog. Polym. Sci., 2010, 35, 357.

    Article  CAS  Google Scholar 

  9. M. A. Kazakova, V. L. Kuznetsov, N. V. Semikolenova, S. I. Moseenkov, D. V. Krasnikov, M. A. Matsko, A. V. Ishchenko, V. A. Zakharov, A. I. Romanenko, O. B. Anikeeva, E. N. Tkachev, V. I. Suslyaev, V. A. Zhuravlev, and K. V. Dorozkin. Phys. Status Solidi B, 2014, 251, 2437.

    Article  CAS  Google Scholar 

  10. S. Arunachalam, A. Gupta, R. Izquierdo, and F. Nabki. Sensors, 2018, 18, 1655.

    Article  PubMed Central  PubMed  Google Scholar 

  11. L. Tao, L. Shengjun, Z. Bowen, W. Bei, N. Dayong, C. Zeng, Y. Ying, W. Ning, and Z. Weifeng. Nanoscale Res. Lett., 2015, 10, 208.

    Article  PubMed Central  PubMed  Google Scholar 

  12. S. S. Raut, B. R. Sankapal, M. S. A. Hossain, S. Pradhan, R. R. Salunkhe, and Y. Yamauchi. Eur. J. Inorg. Chem., 2018, 2018, 137.

    Article  CAS  Google Scholar 

  13. S. Kumar, M. Nehra, D. Kedia, N. Dilbaghi, K. Tankeshwar, and K.-H. Kim. Prog. Energy Combust. Sci., 2018, 64, 219.

    Article  Google Scholar 

  14. M. A. Kazakova, D. M. Morales, C. Andronescu, K. Elumeeva, A. G. Selyutin, A. V. Ishchenko, G. V. Golubtsov, S. Dieckhöfer, W. Schuhmann, and J. Masa. Catal. Today, 2019, doi:https://doi.org/10.1016/J.CATTOD.2019.02.047

  15. O. Y. Podyacheva, D. A. Bulushev, A. N. Suboch, D. A. Svintsitskiy, A. S. Lisitsyn, E. Modin, A. Chuvilin, E. Y. Gerasimov, V. I. Sobolev, and V. N. Parmon. ChemSusChem., 2018, 11, 3724.

    Article  CAS  PubMed  Google Scholar 

  16. M. O. Kazakov, M. A. Kazakova, Y. V. Vatutina, T. V. Larina, Y. A. Chesalov, E. Y. Gerasimov, I. P. Prosvirin, O. V. Klimov, and A. S. Noskov. Catal. Today, 2019, doi:https://doi.org/10.1016/J.CATTOD.2019.03.051

  17. Y. Cheng, C. Xu, L. Jia, J. D. Gale, L. Zhang, C. Liu, P. K. Shen, and S. P. Jiang. Appl. Catal. B Environ., 2015, 163, 96.

    Article  CAS  Google Scholar 

  18. H. Wang, L. Wei, F. Ren, Q. Wang, L. D. Pfefferle, G. L. Haller, and Y. Chen. ACS Nano, 2013, 7, 614.

    Article  CAS  PubMed  Google Scholar 

  19. L. Wen, F. Li, and H.-M. Cheng. Adv. Mater., 2016, 28, 4306.

    Article  CAS  PubMed  Google Scholar 

  20. G. M. Mikheev, V. L. Kuznetsov, K. G. Mikheev, T. N. Mogileva, M. A. Shuvaeva, and S. I. Moseenkov. Tech. Phys. Lett., 2013, 39, 337.

    Article  CAS  Google Scholar 

  21. M. A. Kazakova, E. Y. Korovin, S. I. Moseenkov, A. S. Kachalov, D. I. Sergeenko, A. V. Shuvaev, V. L. Kuznetsov, and V. I. Suslyaev. Russ. J. Appl. Chem., 2018, 91, 1994.

    Article  CAS  Google Scholar 

  22. S. Lu, J. Shao, K. Ma, D. Chen, X. Wang, L. Zhang, Q. Meng, and J. Ma. Carbon, 2018, 136, 387.

    Article  CAS  Google Scholar 

  23. D. V. Krasnikov, I. O. Dorofeev, T. E. Smirnova, V. I. Suslyaev, M. A. Kazakova, S. I. Moseenkov, and V. L. Kuznetsov. Phys. Status Solidi B, 2018, 255, 1700256.

    Article  Google Scholar 

  24. L. Hu, R. He, H. Lei, and D. Fang. Int. J. Thermophys., 2019, 40.

  25. N. Abdolhi, M. Aghaei, A. Soltani, H. Mighani, E. A. Ghaemi, M. B. Javan, A. D. Khalaji, S. Sharbati, M. Shafipour, and H. Balakheyli. J. Struct. Chem., 2019, 60, 845.

    Article  CAS  Google Scholar 

  26. Y. V. Fedoseeva, T. A. Duda, A. G. Kurenya, A. V. Gusel’nikov, K. S. Zhuravlev, O. Y. Vilkov, L. G. Bulusheva, and A. V. Okotrub. J. Struct. Chem., 2017, 58, 876.

    Article  CAS  Google Scholar 

  27. Q. Zhang, J.-Q. Huang, M.-Q. Zhao, W.-Z. Qian, and F. Wei. ChemSusChem., 2011, 4, 864.

    Article  CAS  PubMed  Google Scholar 

  28. M. Kumar and Y. Ando. J. Nanosci. Nanotechnol., 2010, 10, 3739.

    Article  CAS  PubMed  Google Scholar 

  29. S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, and F. Derbyshire. Chem. Phys. Lett., 1999, 315, 25.

    Article  CAS  Google Scholar 

  30. K. J. MacKenzie, O. M. Dunens, and A. T. Harris. Ind. Eng. Chem. Res., 2010, 49, 5323.

    Article  CAS  Google Scholar 

  31. A. Dupuis. Prog. Mater. Sci., 2005, 50, 929.

    Article  CAS  Google Scholar 

  32. J.-C. Charlier and S. Iijima. Carbon Nanotub., 2001, 55. doi:https://doi.org/10.1007/3-540-39947-X_4

  33. C. P. Deck and K. Vecchio. Carbon, 2006, 44, 267.

    Article  CAS  Google Scholar 

  34. W. Chiang and R. M. Sankaran. Adv. Mater., 2008, 20, 4857.

    Article  CAS  Google Scholar 

  35. A. El-Maghraby, H. A. El-Deeb, M. A. Khattab. Fullerenes, Nanotubes, Carbon Nanostruct., 2015, 23, 27.

    Article  CAS  Google Scholar 

  36. L. M. Hoyos-Palacio, A. G. García, J. F. Pérez-Robles, J. González, and H. V. Martínez-Tejada. IOP Conf. Ser. Mater. Sci. Eng., 2014, 59, 012005.

    Article  CAS  Google Scholar 

  37. M. A. Kazakova, V. L. Kuznetsov, S. N. Bokova-Sirosh, D. V. Krasnikov, G. V. Golubtsov, A. I. Romanenko, I. P. Prosvirin, A. V. Ishchenko, A. S. Orekhov, A. L. Chuvilin, and E. D. Obraztsova. Phys. Status Solidi B, 2018, 255, 1700260.

    Article  Google Scholar 

  38. L. Lutterotti. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 2010, 268, 334.

    Article  CAS  Google Scholar 

  39. V. L. Kuznetsov, D. V. Krasnikov, A. N. Schmakov, and K. V. Elumeeva. Phys. Status Solidi B, 2012, 249, 2390.

    Article  CAS  Google Scholar 

  40. A. S. Andreev, D. V. Krasnikov, V. I. Zaikovskii, S. V. Cherepanova, M. A. Kazakova, O. B. Lapina, V. L. Kuznetsov, and J. d’Espinose de Lacaillerie. J. Catal., 2018, 358, 62.

    Article  CAS  Google Scholar 

  41. A. Usoltseva, V. Kuznetsov, N. Rudina, E. Moroz, M. Haluska, and S. Roth. Phys. Status Solidi B, 2007, 244, 3920.

    Article  CAS  Google Scholar 

  42. A. Magrez, J. W. Seo, C. Mikó, K. Hernádi, and L. Forró. J. Phys. Chem. B, 2005, 109, 10087.

    Article  CAS  PubMed  Google Scholar 

  43. S. N. Bokova-Sirosh, V. L. Kuznetsov, A. I. Romanenko, M. A. Kazakova, D. V. Krasnikov, E. N. Tkachev, Y. I. Yuzyuk, and E. D. Obraztsova. J. Nanophotonics, 2016, 10, 012526.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project No. 19-73-00069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Golubtsov.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2020, published in Zhurnal Strukturnoi Khimii, 2020, Vol. 61, No. 4, pp. 671–683.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubtsov, G.V., Kazakova, M.A., Selyutin, A.G. et al. Mono-, Bi-, and Trimetallic Catalysts for the Synthesis of Multiwalled Carbon Nanotubes Based on Iron Subgroup Metals. J Struct Chem 61, 640–651 (2020). https://doi.org/10.1134/S0022476620040186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620040186

Keywords

Navigation