Skip to main content
Log in

Using Current-Voltage Characteristics to Control the Structure of Contacts in Polyethylene Based Composites Modified by Multiwalled Carbon Nanotubes

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The conductivity of three types of composites prepared by mechanical melt mixing from polyethylene (PE) and multi-walled carbon nanotubes (MWCNTs) with an average diameter of 9.8 nm and an aspect ratio of ∼3000, 112, 36 is studied. The structure of these composites is investigated by optical and scanning electron microscopies and powder X-ray analysis. Cyclic measurements of current-voltage (I–V) characteristics and the use of a 3-point measurement scheme showed that the current density through the composite is nonlinearly increasing with increasing voltage or upon sequential measurements of I–V characteristics with the same voltage. The results of I–V measurements were used to determine concentration dependences of conductivity and their changes for each type of MWCNTs. It is shown that the percolation threshold determined from the third I–V measurement for MWCNTs in composites prepared by mechanical melt mixing decreases with decreasing aspect ratio of nanotubes from 3000 to 36.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Dresselhaus, G. Dresselhaus, J. C. Charlier, and E. Hernandez. Philos. Trans. R. Soc., A, 2004, 362, 2065.

    Article  CAS  Google Scholar 

  2. V. Popov. Mat. Sci. Eng., R, 2004, 43, 61.

    Article  Google Scholar 

  3. J.-F. Feller, M. Castro, and B. Kumar. Polymer-Carbon Nanotube Conductive Nanocomposites for Sensing. Elsevier: USA, 2011.

    Book  Google Scholar 

  4. V. Mittal. Polymer Nanotube Nanocomposites: Synthesis, Properties, and Applications. Salem, Mass: Scrivener, 2010.

    Book  Google Scholar 

  5. R. K. Prusty, D. K. Rathore, and B. C. Ray. Adv. Colloid Interface Sci., 2017, 240, 77.

    Article  CAS  PubMed  Google Scholar 

  6. L. Wang, Y. Liu, Z. Zhang, B. Wang, J. Qiu, D. Hui, and S. Wang. Composites, Part B, 2017, 122, 145.

    Article  CAS  Google Scholar 

  7. G. Mittal, K. Y. Rhee, V. Mišković-Stanković, and D. Hui. Composites, Part B, 2018, 138, 122.

    Article  CAS  Google Scholar 

  8. S. Sankaran, K. Deshmukh, M. B. Ahamed, and S. K. Khadheer Pasha. Composites, Part A, 2018, 114, 49.

    Article  CAS  Google Scholar 

  9. F. Ghorbani Zamani, H. Moulahoum, M. Ak, D. Odaci Demirkol, and S. Timur. Trends Anal. Chem., 2019, 118, 264.

    Article  CAS  Google Scholar 

  10. T. A. Saleh, P. Parthasarathy, and M. Irfan. Trends Environ. Anal. Chem., 2019, 24, e00067.

    Article  CAS  Google Scholar 

  11. G. S. Bocharov, A. V. Yeletsky, and A. A. Knizhnik. Tech. Phys., 2016, 61, 1506.

    Article  CAS  Google Scholar 

  12. A. V. Yeletsky, A. A. Knizhnik, B. V. Potapkin, and H. M. Kenny. Phys. Usp., 2015, 58, 209.

    Article  Google Scholar 

  13. A. B. Kaiser, S. A. Rogers, and Y. W. Park. Mol.Cryst. Liq. Cryst., 2004, 415, 115.

    Article  CAS  Google Scholar 

  14. N. Kang, J. S. Hu, W. J. Kong, L. Lu, D. L. Zhang, Z. W. Pan, and S. S. Xie. Phys. Rev. B, 2002, 66, 241403.

    Article  Google Scholar 

  15. S. K. Saha. Appl. Phys. Lett., 2002, 81, 3645.

    Article  CAS  Google Scholar 

  16. W. S. Bao, S. A. Meguid, Z. H. Zhu, and G. J. Weng. J. Appl. Phys., 2012, 111, 093726.

    Article  Google Scholar 

  17. B. De Vivo, P. Lamberti, G. Spinelli, V. Tucci, L. Vertuccio, and V. Vittoria. J. Appl. Phys., 2014, 116, 054307.

    Article  Google Scholar 

  18. C. Li, E. T. Thostenson, and T.-W. Chou. Appl. Phys. Lett., 2007, 91, 223114.

    Article  Google Scholar 

  19. S. Gong, Z. H. Zhu, and S. A. Meguid. Polymer, 2015, 56, 498.

    Article  CAS  Google Scholar 

  20. J. Wang, S. Yu, S. Luo, B. Chu, R. Sun, and C.-P. Wong. Mater. Sci. Eng. B, 2016, 206, 55.

    Article  CAS  Google Scholar 

  21. P. C. P. Watts, W. K. Hsu, D. P. Randall, H. W. Kroto, and D. R. M. Walton. Phys. Chem. Chem. Phys., 2002, 4, 5655.

    Article  CAS  Google Scholar 

  22. M. Ferrara, H.-C. Neitzert, M. Sarno, G. Gorrasi, D. Sannino, V. Vittoria, and P. Ciambelli. Phys. E (Amsterdam, Neth.), 2007, 37, 66.

    Article  CAS  Google Scholar 

  23. A.-T. Chien, S. Cho, Y. Joshi, and S. Kumar. Polymer, 2014, 55, 6896.

    Article  CAS  Google Scholar 

  24. I. A. Ventura, J. Zhou, and G. Lubineau. Nanoscale Res. Lett., 2015, 10, 485.

    Article  PubMed Central  PubMed  Google Scholar 

  25. M. Castellino, M. Rovere, M. I. Shahzad, and A. Tagliaferro. Composites, Part A, 2016, 87, 237.

    Article  CAS  Google Scholar 

  26. C. H. Hu, C. H. Liu, L. Z. Chen, and S. S. Fan. Appl. Phys. Lett., 2009, 95, 103103.

    Article  Google Scholar 

  27. C. H. Liu and S. S. Fan. Appl. Phys. Lett., 2007, 90, 041905.

    Article  Google Scholar 

  28. A. Usoltseva, V. Kuznetsov, N. Rudina, E. Moroz, M. Haluska, and S. Roth. Phys. Status Solidi B, 2007, 244, 3920.

    Article  CAS  Google Scholar 

  29. V. L. Kuznetsov, D. V. Krasnikov, A. N. Schmakov, and K. V. Elumeeva. Phys. Status Solidi B, 2012, 249, 2390.

    Article  CAS  Google Scholar 

  30. M. A. Kazakova, A. G. Selyutin, N. V. Semikolenova, A. V. Ishchenko, S. I. Moseenkov, M. A. Matsko, V. A. Zakharov, and V. L. Kuznetsov. Compos. Sci. Technol., 2018, 167, 148.

    Article  CAS  Google Scholar 

  31. S. I. Moseenkov, V. L. Kuznetsov, G. V. Golubtsov, A. V. Zavorin, and A. N. Serkova. Express Polym. Lett., 2019, 13, 1057.

    Article  CAS  Google Scholar 

  32. S. B. Kharchenko, J. F. Douglas, J. Obrzut, E. A. Grulke, and K. B. Migler. Nat. Mater., 2004, 3, 564.

    Article  CAS  PubMed  Google Scholar 

  33. D. H. Xu and Z. G. Wang. Macromolecules, 2008, 41, 815.

    Article  CAS  Google Scholar 

  34. K. Prashantha, J. Soulestin, M. F. Lacrampe, and P. Krawczak. Polym. Polym. Compos., 2009, 17, 205.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project No. 17-73-20293).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Moseenkov.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2020, published in Zhurnal Strukturnoi Khimii, 2020, Vol. 61, No. 4, pp. 659–670.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moseenkov, S.I., Zavorin, A.V., Ishchenko, A.V. et al. Using Current-Voltage Characteristics to Control the Structure of Contacts in Polyethylene Based Composites Modified by Multiwalled Carbon Nanotubes. J Struct Chem 61, 628–639 (2020). https://doi.org/10.1134/S0022476620040174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620040174

Keywords

Navigation