Skip to main content
Log in

Chemical Vapor Deposition of Silicon Nanoparticles on the Surface of Multiwalled Carbon Nanotubes

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Chemical vapor deposition (CVD) along with thermal decomposition of monosilane (SiH4) in a fluidized bed of multiwalled carbon nanotubes (MWCNTs) is used to prepare MWCNT-Si composites containing silicon nanoparticles deposited on the nanotube surfaces. The structure of obtained Si nanoparticles in composites based on MWCNTs with different average diameters is studied by TEM, SEM, XRD, Raman spectroscopy, and FTIR spectroscopy of diffuse reflection. The size of Si particles varies from 3 nm to 45 nm and increases together with the MWCNT diameter. The major part of precipitated silica in the nanoparticles occurs in the amorphous state with small (below 3 nm in size) inclusions of nanocrystalline silicon. Specific discharge capacity of prepared composites used as the anode material for lithium-ion batteries is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Ischenko, G. V. Fetisov, and L. A. Aslalnov. Nanosilicon: Properties, Synthesis, Applications, Methods of Analysis and Control. CRC Press, USA, 2014.

    Book  Google Scholar 

  2. Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines/Munir Nayfeh. Elsevier, 2018, 602.

  3. Lithium-Ion Batteries: a Machine-Generated Summary of Current Research/Beta Writer. Springer International Publishing, 2019, 247.

  4. Lithium-Ion Batteries: Advances and Applications/Ed. G. Pistoia. Elsevier, 2014, 664.

  5. M. Denby, N. E. Hehner, and E. J. Ritchie. J. Electrochem. Soc., 1981, 128.

  6. T. D. Hatchard and J. R. Dahn. J. Electrochem. Soc., 2004, 151, A838–A842.

    Article  CAS  Google Scholar 

  7. M. N. Obrovac and L. Christensen. Electrochem. Solid-State Lett., 2004, 7(5), A93–A96.

    Article  CAS  Google Scholar 

  8. U. Kasavajjula, C. Wang, and A. J. Appleby. J. Power Sources, 2007, 163.

  9. H. Kim, E.-J. Lee, and Y.-K. Sun. Mater. Today, 2014, 17.

  10. K. Feng, M. Li, W. Liu, A. G. Kashkooli, X. Xiao, M. Cai, and Z. Chen. Small, 2018, 8, 1–33.

    Google Scholar 

  11. C. K. Chan, H. Peng, G. Liu, K. Mcllwrath, X. F. Zhang, R. A. Huggins, and Y. Cui. Nature Nanotech., 2008, 1, 31–35.

    Article  Google Scholar 

  12. H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, and Y. Cui. Nature Nanotech., 2012, 5, 310–315.

    Article  Google Scholar 

  13. Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W. D. Nix, and Y. Cui. Nano Lett., 2011, 7, 2949–2954.

    Article  Google Scholar 

  14. C.-M. Park, J.-H. Kim, H. Kim, and H.-J. Sohn. Chem. Soc. Rev., 2010, 8, 3115–3141.

    Article  Google Scholar 

  15. A. J. Kulik, A. Kis, B. Lukic, K. Lee, and L. Forró. Springer Berlin Heidelberg: Heidelberg, 2007, 255–260.

  16. M. Miao. Carbon, 2011, 49.

  17. Z. Han and A. Fina. Prog. Polym. Sci., 2011, 36.

  18. J. Saint, M. Morcrette, D. Larcher, L. Laffont, S. Beattie, J.-P. Pérès, D. Talaga, M. Couzi, and J.-M. Tarascon. Adv. Funct. Mater., 2007, 11, 1765–1774.

    Article  Google Scholar 

  19. H. K. Liu, Z. P. Guo, J. Z. Wang, and K. Konstantinov. J. Mater. Chem., 2010, 45, 10055–10057.

    Article  Google Scholar 

  20. J. Deng, H. Ji, C. Yan, J. Zhang, W. Si, S. Baunack, S. Oswald, Y. Mei, and O. G. Schmidt. Angew. Chem., Int. Ed., 2013, 8, 2326–2330.

    Article  Google Scholar 

  21. K. Fu, O. Yildiz, H. Bhanushali, Y. Wang, K. Stano, L. Xue, X. Zhang, and P. D. Bradford. Adv. Mater., 2013, 36, 5109–5114.

    Article  Google Scholar 

  22. M. N. Obrovac and L. J. Krause. J. Electrochem. Soc., 2007, 154.

  23. L. Ji and X. Zhang. Carbon, 2009, 47.

  24. L.-F. Cui, R. Ruffo, C. K. Chan, H. Peng, and Y. Cui. Nano Lett., 2009, 1, 491–495.

    Article  Google Scholar 

  25. M.-H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, and J. Cho. Nano Lett., 2009, 11, 3844–3847.

    Article  Google Scholar 

  26. L. Ji, Z. Lin, M. Alcoutlabi, and X. Zhang. Energy Environ. Sci., 2011, 8, 2682–2699.

    Article  Google Scholar 

  27. L. Su, Y. Jing, and Z. Zhou. Nanoscale, 2011, 10, 3967–3983.

    Article  Google Scholar 

  28. H. Li and H. Zhou. Chem. Commun., 2012, 9, 1201–1217.

    Article  Google Scholar 

  29. L.-F. Cui, L. Hu, J. W. Choi, and Y. Cui. ACS Nano., 2010, 7, 3671–3678.

    Article  Google Scholar 

  30. H. Yu, Q. Zhang, G. Gu, Y. Wang, G. Luo, and F. Wei. AIChE J., 2006, 12, 4110–4123.

    Article  Google Scholar 

  31. N. Coppey, L. Noé, M. Monthioux, and B. Caussat. J. Nanosci. Nanotechnol., 2011, 9, 8392–8395.

    Article  Google Scholar 

  32. V. L. Kuznetsov, S. N. Bokova-Sirosh, S. I. Moseenkov, A. V. Ishchenko, D. V. Krasnikov, M. A. Kazakova, A. I. Romanenko, E. N. Tkachev, and E. D. Obraztsova. Phys. Status Solidi B, 2014, 12, 2444–2450.

    Article  Google Scholar 

  33. A. P. Babichev, N. A. Babushkina, and A. M. Bratkovsky. Energoatomizdat: Moskva, 1991, 1232.

  34. D. V. Krasnikov, V. L. Kuznetsov, A. I. Romanenko, and A. N. Shmakov. Carbon, 2018, 139.

  35. H. Kim, M. Seo, M.-H. Park, and J. Cho. Angew. Chem., Int. Ed., 2010, 12, 2146–2149.

    Article  Google Scholar 

  36. V. A. Volodin and V. A. Skachkov. J. Exp. Theor. Phys., 2013, 116(1), 87–94.

    Article  CAS  Google Scholar 

  37. A. S. Kachko and V. A. Volodin. Vestnik NGU, 2010, 1, 48–55.

    Google Scholar 

Download references

Funding

The work was carried out within the State Contract for Boreskov Institute of Catalysis SB RAS. The authors thank A.N. Serkova for the SEM study of MWCNT-Si composites.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Zavorin or V. L. Kuznetsov.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2020, published in Zhurnal Strukturnoi Khimii, 2020, Vol. 61, No. 4, pp. 648–658.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavorin, A.V., Kuznetsov, V.L., Moseenkov, S.I. et al. Chemical Vapor Deposition of Silicon Nanoparticles on the Surface of Multiwalled Carbon Nanotubes. J Struct Chem 61, 617–627 (2020). https://doi.org/10.1134/S0022476620040162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620040162

Keywords

Navigation