Skip to main content
Log in

Oxygen Activation on Four-Atom Metal Clusters and Alloys

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The dissociation of oxygen molecules and generation of two separated oxygen atoms is an important step in fuel cells. The activation of the bond linking two oxygen atoms in the oxygen molecule usually needs large activation barriers on metals utilized as catalysts. In the present study, the characterization and catalytic performance of four-atom Al nanocluster (Al4) as well as XAl3 (X = Ti and Sc) nanoalloys in activation of the oxygen molecule are investigated using density functional theory. Our results show that the tetrahedral isomer of the Al4 nanocluster lies lower in energy (Ecoh = −33.35 kcal/mol) than does the corresponding rhombus isomer (Ecoh = −31.05 kcal/mol). Also, transition metal (Ti and Sc) doping reduces the reactivity of the Al4 nanocluster. In consistent with the suggestion of reactivity descriptors used in the present study, our results reveal that the maximum catalytic performance in activation of the oxygen-oxygen bond is related to the pristine Al4 clusters. The energy barrier of O2 activation on the Al4 system (21.26 kcal/mol) exhibits that the activation of the bond linking of two oxygen atoms on Al4 is kinetically preferable. In this respect, our study shows that the Al4 nanocluster can be considered as an excellent catalyst for activation the oxygen molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. C. Steele and A. Heinzel. Nature, 2001, 414, 345.

    Article  CAS  PubMed  Google Scholar 

  2. J. Mao, S. Li, Y. Zhang, X. Chu, and Z. Yang. J. Chem. Phys., 2016, 144, 204703.

    Article  PubMed  Google Scholar 

  3. Y. Nie, L. Li, and Z. Wei. Chem. Soc. Rev., 2015, 44, 2168.

    Article  CAS  PubMed  Google Scholar 

  4. F. Zhao, F. Harnisch, U. Schroder, F. Scholz, P. Bogdanoff, and I. Herrmann. Environ. Sci. Technol., 2006, 40, 5193.

    Article  CAS  PubMed  Google Scholar 

  5. Y. Bing, H. Liu, L. Zhang, D. Ghosh, and J. Zhang. Chem. Soc. Rev., 2010, 39, 2184.

    Article  CAS  PubMed  Google Scholar 

  6. M. K. Debe. Nature, 2012, 486, 43.

    Article  CAS  PubMed  Google Scholar 

  7. C. Zhu, H. Li, S. Fu, D. Du, and Y. Lin. Chem. Soc. Rev., 2016, 45, 517.

    Article  CAS  PubMed  Google Scholar 

  8. A. Roudgar, M. Eikerling, and R. van Santen. Phys. Chem. Chem. Phys., 2010, 12, 614.

    Article  CAS  PubMed  Google Scholar 

  9. S. Liu and S. Huang. Carbon, 2017, 115, 11.

    Article  CAS  Google Scholar 

  10. F. T. Wagner, B. Lakshmanan, and M. F. Mathias. J. Phys. Chem. Lett., 2010, 1, 2204.

    Article  CAS  Google Scholar 

  11. H. A. Gasteiger, S. S. Kocha, B. Sompalli, and F. T. Wagner. Appl. Catal. B, 2005, 56, 9.

    Article  CAS  Google Scholar 

  12. W. Yu, M. D. Porosoff, and J. G. Chen. Chem. Rev., 2012, 112, 5780.

    Article  CAS  PubMed  Google Scholar 

  13. B. James and J. Kalinosk. DOE-EERE Fuel Cell Technologies Program-2009 DOE Hydrogen Program Review, www.hydrogen.energy.gov/pdfs/review09/fc30james.pdf.

  14. J. Sinha, S. Lasher, and Y. Yang, DOE-EERE Fuel Cell Technologies Program-2009 DOE Hydrogen Program Review, www.hydrogen.energy.gov/pdfs/review09/fc_31_sinha.pdf.

  15. A. Rabis, P. Rodriguez and T. J. Schmidt. ACS Catal., 2012, 2, 864.

    Article  CAS  Google Scholar 

  16. L. Xiong, A. M. Kannan, and A. Manthiram. Electrochem. Commun., 2002, 4, 898.

    Article  CAS  Google Scholar 

  17. T. Wadayama, N. Todoroki, Y. Yamada, T. Sugawara, K. Miyamoto, and Y. Iijama. Electrochem. Commun., 2010, 12, 1112.

    Article  CAS  Google Scholar 

  18. V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, and N. M. Markovic. Science, 2007, 315, 493.

    Article  CAS  PubMed  Google Scholar 

  19. J. Zhang, Y. Mo, M. B. Vukmirovic, R. Klie, K. Sasaki, and R. R. Adzic. J. Phys. Chem. B, 2004, 108, 10955.

    Article  CAS  Google Scholar 

  20. A. Omidvar. Inorg. Chem., 2018, 57, 9335.

    Article  CAS  PubMed  Google Scholar 

  21. R. Kothandaraman, V. Nallathambi, K. Artyushkova, and S. C. Barton. Appl. Catal. B, 2009, 92, 209.

    Article  CAS  Google Scholar 

  22. A. Omidvar. Comput. Theor. Chem., 2017, 1115, 179.

    Article  CAS  Google Scholar 

  23. R. A. Sidik, A. B. Anderson, N. P. Subramanian, S. P. Kumaraguru, and B. N. Popov. J. Phys. Chem. B, 2006, 110, 1787.

    Article  CAS  PubMed  Google Scholar 

  24. A. Omidvar. Surf. Sci., 2018, 668, 117.

    Article  CAS  Google Scholar 

  25. J.-I. Ozaki, N. Kimura, T. Anahara, and A. Oya. Carbon, 2007, 45, 1847.

    Article  CAS  Google Scholar 

  26. T. Ikeda, M. Boero, S.-F. Huang, K. Terakura, M. Oshima, and J.-I. Ozaki. J. Phys. Chem. C, 2008, 112, 14706.

    Article  CAS  Google Scholar 

  27. A. Omidvar. Vacuum, 2018, 147, 126.

    Article  CAS  Google Scholar 

  28. T. Ikeda, M. Boero, S.-F. Huang, K. Terakura, M. Oshima, J.-I. Ozaki, and S. Miyata. J. Phys. Chem. C, 2010, 114, 8933.

    Article  CAS  Google Scholar 

  29. A. Omidvar. Mater. Chem. Phys., 2017, 202, 258.

    Article  CAS  Google Scholar 

  30. L. Zhang and Z. Xia. J. Phys. Chem., C, 2011, 115, 11170.

    Article  CAS  Google Scholar 

  31. L. Qu, Y. Liu, J.-B. Baek, and L. Dai. ACS Nano, 2010, 4, 1321.

    Article  CAS  PubMed  Google Scholar 

  32. A. Omidvar. Chem. Phys., 2017, 493, 85.

    Article  CAS  Google Scholar 

  33. A. Omidvar. Appl. Surf. Sci., 2018, 434, 1239.

    Article  CAS  Google Scholar 

  34. A. Omidvar. Synthetic Met., 2017, 234, 38.

    Article  CAS  Google Scholar 

  35. A. Omidvar. J. Mol. Graph. Model., 2017, 77, 218.

    Article  CAS  PubMed  Google Scholar 

  36. V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, and J. K. Nørskov. Angew. Chem., Int. Ed., 2006, 45, 2897.

    Article  CAS  Google Scholar 

  37. W.-L. Yim and T. Klüner. J. Catal., 2008, 254, 349.

    Article  CAS  Google Scholar 

  38. L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.-W. Li, C. Shi, X.-D. Wen, and D. Ma. Nature, 2017, 544, 80.

    Article  CAS  PubMed  Google Scholar 

  39. J. A. Rodríguez, L. Feria, T. Jirsak, Y. Takahashi, K. Nakamura, and F. Illas. J. Am. Chem. Soc., 2010, 132, 3177.

    Article  PubMed  Google Scholar 

  40. X. Zhang, Z. Lu, and Z. Yang. Chem. Phys. Lett., 2016, 649, 141.

    Article  CAS  Google Scholar 

  41. D. D. Vasić, I. A. Pašti, and S. V. Mentus. Int. J. Hydrogen Energ., 2013, 38, 5009.

    Article  Google Scholar 

  42. B. Bogdanovic, M. Felderhoff, A. Pommerin, F. Schuth, N. Spielkamp, and A. Stark. J. Alloys Comp., 2009, 471, 383.

    Article  CAS  Google Scholar 

  43. H. Wang, A. Tezuka, H. Ogawa, and T. Ikeshoji. Phys. Rev. B, 2011, 83, 045112.

    Article  Google Scholar 

  44. X. D. Kang, P. Wang, X. P. Song, X. D. Yao, G. Q. Lu, and H. M. Cheng. J. Alloys Comp., 2006, 424, 365.

    Article  CAS  Google Scholar 

  45. M. Samolia and T. J. D. Kumar. J. Alloys Comp., 2014, 588, 144.

    Article  CAS  Google Scholar 

  46. M. Samolia and T. J. D. Kumar. J. Alloys Comp., 2013, 552, 457.

    Article  CAS  Google Scholar 

  47. J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 1996, 77, 3865.

    Article  CAS  PubMed  Google Scholar 

  48. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman et al. Gaussian 09, Revision D.01, Gaussian, Inc, Wallingford, CT, 2009.

    Google Scholar 

  49. S. Grimme. J. Comput. Chem., 2006, 27, 1787.

    Article  CAS  PubMed  Google Scholar 

  50. A. E. Reed, L. A. Curtiss, and F. A. Weinhold. Chem. Rev., 1988, 88, 899.

    Article  CAS  Google Scholar 

  51. R. G. Parr, L. V. Szentpaly, and S. Liu. J. Am. Chem. Soc., 1999, 121, 1922.

    Article  CAS  Google Scholar 

  52. P. Fuentealba and R. G. Parr. J. Chem. Phys., 1991, 94, 5559.

    Article  CAS  Google Scholar 

  53. S. Royer and D. Duprez. Chem. Cat. Chem., 2011, 3, 24.

    CAS  Google Scholar 

  54. B. T. Qiao, A. Q. Wang, X. F. Yang, L. F. Allard, Z. Jiang, Y. T. Cui, J. Y. Liu, J. Li, and T. Zhang. Nat. Chem., 2011, 3, 634.

    Article  CAS  PubMed  Google Scholar 

  55. M. S. Chen, Y. Cai, Z. Yan, K. K. Gath, S. Axnanda, and D. W. Goodman. Surf. Sci., 2007, 601, 5326.

    Article  CAS  Google Scholar 

  56. Q. Fu, W. X. Li, Y. X. Yao, H. Y. Liu, H. Y. Su, D. Ma, X. G. Gu, L. M. Chen, Z. Wang, H. Zhang, B. Wang, and X. H. Bao. Science, 2010, 328, 1141.

    Article  CAS  PubMed  Google Scholar 

  57. R. S. Johnson, A. DeLaRiva, V. Ashbacher, B. Halevi, C. J. Villanueva, G. K. Smith, S. Lin, A. K. Datye, and H. Guo. Phys. Chem. Chem. Phys., 2013, 15, 7768.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Islamic Azad University, Iran for computational resources and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Saedi.

Ethics declarations

The authors declare that there is no conflict of interest regarding the publication of this paper. This manuscript is the authors’ original work and has not been published nor has it been submitted simultaneously elsewhere.

Additional information

Text © The Author(s), 2020, published in Zhurnal Strukturnoi Khimii, 2020, Vol. 61, No. 4, pp. 545–552.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saedi, L., Alipour, E., Alimohammady, F. et al. Oxygen Activation on Four-Atom Metal Clusters and Alloys. J Struct Chem 61, 515–522 (2020). https://doi.org/10.1134/S0022476620040034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620040034

Keywords

Navigation