Skip to main content
Log in

Coordination Numbers and Critical Topology of Centrosymmetric Hydrocarbons

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Various types of coordination numbers in molecular crystals are discussed. The relationship between parameter R of the Delone system, coordination number (CN), topological type, and the intermolecular interaction energy is studied on the example of crystal structures of centrosymmetric hydrocarbons. The first coordination sphere of a molecule takes 86.2±1.6% of the lattice energy; the interactions providing molecular arrangement take at least 50% of the lattice energy for CN ≥ 6. The nets characterizing the framework of intermolecular interactions in this series of structures tend to the lowest cyclomatic number of the quotient graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Kitaigorodskii. Organic Chemical Crystallography. Consultants Bureau, New York, 1961.

    Google Scholar 

  2. P. M. Zorkii. Zh. Fiz. Khim, 1994, 68, 966.

    CAS  Google Scholar 

  3. E. V. Peresypkina and V. A. Blatov. Acta Crystallogr., 2000, B56, 1035.

    Article  CAS  Google Scholar 

  4. V. A. Blatov. Cryst. Rev., 2004, 10, 249.

    Article  CAS  Google Scholar 

  5. O. Carugo, O. A. Blatova, E. O. Medrish, V. A. Blatov, and D. M. Proserpio. Sci. Rep., 2017, 7, 13209.

    Article  Google Scholar 

  6. Yu. V. Zefirov and P. M. Zorkii. Vestn. Mosk. Univ., Ser. Khim., 1978, 19, 554.

    CAS  Google Scholar 

  7. P. M. Zorkii and Yu. V. Zefirov. Vestn. Mosk. Univ., Ser. Khim., 1972, 13, 590.

    CAS  Google Scholar 

  8. O. V. Grineva. J. Struct. Chem., 2017, 58, 373.

    Article  CAS  Google Scholar 

  9. A. M. Banaru. Moscow Univ. Chem. Bull., 2009, 64, 80.

    Article  Google Scholar 

  10. E. A. Lord and A. M. Banaru. Moscow Univ. Chem. Bull., 2012, 67, 50.

    Article  Google Scholar 

  11. A. Banaru and A. Kochnev. Studia UBB Chemia, 2017, LXII, 121.

    Article  Google Scholar 

  12. B. N. Delone, N. P. Dolbilin, M. I. Shtogrin and R. V. Galiulin. Soviet Math. Doklady, 1976, 17, 319.

    Google Scholar 

  13. R. V. Galiulin. Zh. Vychisl. Mat. Mat. Fiz., 2003, 43, 790.

    Google Scholar 

  14. I. A. Baburin, M. Bouniaev, N. Dolbilin, N. Yu. Erokhovets, A. Garber, S. V. Krivovichev, and E. Schulte. Acta Crystallogr., 2018, A74, 616.

    Google Scholar 

  15. N. Dolbilin. Struct. Chem., 2016, 27, 1725.

    Article  CAS  Google Scholar 

  16. W. E. Klee. Cryst. Res. Technol., 2004, 39, 959.

    Article  CAS  Google Scholar 

  17. C. Bonneau, O. Delgado-Friedrichs, M. O'Keeffe, and O. M. Yaghi. Acta Crystallogr., 2004, A60, 517.

    Article  CAS  Google Scholar 

  18. V. A. Blatov. J. Struct. Chem, 2009, 50, S160.

    Article  CAS  Google Scholar 

  19. M. O'Keeffe, M. A. Peskov, S. J. Ramsden, and O. M. Yaghi. Accts. Chem. Res., 2008, 41, 1782.

    Article  CAS  Google Scholar 

  20. V. Blatov, M. O'Keeffe, and D. M. Proserpio. CrystEngComm, 2010, 12, 44.

    Article  CAS  Google Scholar 

  21. J. J. McKinnon, M. A. Spackman, and A. S. Mitchell. Chem. Eur. J., 1998, 4, 2136.

    Article  CAS  Google Scholar 

  22. G. Filippini and A. Gavezzotti. Acta Crystallogr., 1993, B49, 868.

    Article  CAS  Google Scholar 

  23. M. A. Prokaeva, I. A. Baburin, and V. N. Serezhkin. J. Struct. Chem., 2009, 50, 867.

    Article  CAS  Google Scholar 

  24. V. A. Blatov, A. P. Shevchenko, and D. M. Proserpio. Cryst. Growth Des., 2014, 14, 3576.

    Article  CAS  Google Scholar 

  25. K. Uno, Y. Ogawa, and N. Nakamura. Cryst. Growth Des., 2008, 8, 592.

    Article  CAS  Google Scholar 

  26. A. M. Banaru. Cryst. Rep., 2019, 64, 847.

    Article  CAS  Google Scholar 

  27. F. Aman, A. M. Asiri, W. A. Siddicui et al. CrystEngComm, 2014, 16, 1963.

    Article  CAS  Google Scholar 

  28. R. Boese, D. Blaser, R. Latz, and A. Baumen. Acta Crystallogr., 1999, C55, 9900023.

    Google Scholar 

  29. J.-M. Hu, V. A. Blatov, B. Yu, K. Van Hecke, and G.-H. Cui. Dalton Trans., 2016, 45, 2426.

    Article  CAS  Google Scholar 

  30. M. Podsiadlo, A. Olejniczak, and A. Katrusiak. J. Phys. Chem. C, 2013, 117, 4759.

    Article  CAS  Google Scholar 

  31. N. A. Ahmed, A. I. Kitaigorodsky, and M. I. Sirota. Acta Crystallogr., 1972, B28, 2875.

    Article  Google Scholar 

  32. R. Boese, D. Blaeser, R. Gleiter, K. H. Pfeifer, W. E. Billups, and M. M. Haley. J. Am. Chem. Soc., 1993, 115, 743.

    Article  CAS  Google Scholar 

  33. R. K. McMullan, A. Kvick, and P. Popelier. Acta Crystallogr., 1992, B48, 726.

    Article  CAS  Google Scholar 

  34. M. Li., D. Li, M. O'Keeffe, and O. M. Yaghi. Chem. Rev., 2014, 114, 1343.

    Article  CAS  Google Scholar 

  35. L. Pauling. J. Am. Chem. Soc., 1929, 51, 1010.

    Article  CAS  Google Scholar 

  36. A. Beukemann and W. E. Klee. Z. Krist., 1992, 201, 37.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Banaru.

Additional information

Conflict of Interests

The authors declare that they have no conflict of interests.

Russian Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 12, pp. 1968-1979.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banaru, A.M., Gridin, D.M. Coordination Numbers and Critical Topology of Centrosymmetric Hydrocarbons. J Struct Chem 60, 1885–1895 (2019). https://doi.org/10.1134/S0022476619120047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619120047

Keywords

Navigation