Skip to main content
Log in

In situ Study of Structural Transformations of the Active Phase of VMoNbTeO Catalysts under Reduction Conditions

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

VMoNbTeO catalysts show high activity in the reactions of selective oxidation of ethane and propane. Time-resolved X-ray diffraction is used to study structural transformations of a mixed oxide with the composition (TeO)0.18(Mo0.7V0.22Nb0.08)20O56 and the structure of the active M1 phase upon heating in a hydrogen atmosphere (1% H2 in helium). It is shown that the structure of the M1 phase is destroyed in the presence of a reducing agent above 480 °C. The process is accompanied by structural distortions, diminishing of the size of crystalline blocks, elimination of tellurium (due to the reduction and sublimation), and the reduction by molybdenum and vanadium cations. As a result, VMoNb oxides with a disordered structure are formed and rapidly crystallized at T > 480 °C into the rutile-type monoclinic oxide (Mo,V,Nb)O2 with a variable composition. X-ray photoelectron spectroscopy and transmission electron microscopy data confirm heterogeneous compositions of oxides formed by the decomposition of the initial phase. The surface of the formed particles is enriched with vanadium and niobium present in the composition of the oxides with disordered structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Kihlborg. Ark. Kemi., 1963, 21, 471–495.

    CAS  Google Scholar 

  2. M. A. Poraj-Koshits and L. O. Atovmyan. Crystal Chemistry and Stereochemistry of Molybdenum Coordination Compounds [in Russian]. Nauka: M., 1974.

  3. W. Ueda, D. Vitry, and T. Katou. Catal. Today, 2004, 96, 235–240.

    Article  CAS  Google Scholar 

  4. Y. Zhu, W. Lu, H. Li, and H. Wan. J. Catal., 2007, 246, 382–389.

    Article  CAS  Google Scholar 

  5. X. Yang, R. Feng, W. Ji, and C. Au. J. Catal., 2008, 253, 57–65.

    Article  CAS  Google Scholar 

  6. H.-G. Lintz and S. P. Müller. Appl. Catal. A-Gen., 2009, 357, 178–183.

    Article  CAS  Google Scholar 

  7. P. DeSanto, D. Buttrey, R. K. Grasselli, C. G. Lugmair, A. F. Volpe Jr, B. H. Toby, and T. Vogt. Z. Kristallogr., 2004, 219, 152–165.

    CAS  Google Scholar 

  8. X. Li, D. J. Buttrey, D. A. Blom, and T. Vogt. Top. Catal., 2011, 54, 614–626.

    Article  CAS  Google Scholar 

  9. W. D. Pyrz, D. A. Blom, T. Vogt, and D. J. Buttrey. Angew. Chem., Int. Ed., 2008, 47, 2788–2791.

    Article  CAS  Google Scholar 

  10. T. Vogt, D. A. Blom, L. Jones, and D. J. Buttrey. Top. Catal., 2016, 59, 1489–1495.

    Article  CAS  Google Scholar 

  11. M. Hävecker, S. Wrabetz, J. Kröhnert, L.I. Csepei, R. Naumann D’Alnoncourt, Y. V. Kolen’ko, F. Girgsdies, R. Schlögl, and A. Trunschke. J. Catal., 2012, 285, 48–60.

    Article  Google Scholar 

  12. T. T. Nguyen, B. Deniau, M. Baca, and J. M. M. Millet. Top. Catal., 2016, 59, 1496–1505.

    Article  CAS  Google Scholar 

  13. B. Chu, L. Truter, and T. A. Nijhuis, Y. Cheng. Appl. Catal. A-Gen., 2015, 498, 99–106.

    Article  CAS  Google Scholar 

  14. J. Valente, H. Armendáriz-Herrera, R. Quintana-Solórzano, P. del Ángel, N. Nava, A. Masso, and J. M. L. Nieto. ACS Catal., 2014, 4, 1292–1301.

    Article  CAS  Google Scholar 

  15. I. I. Mishanin, A. N. Kalenchuk, K. I. Maslakov, V. V. Lunin, A. E. Koklin, E. D. Finashina, and V. I. Bogdan. Russ. J. Phys. Chem. A., 2016, 90, 1132–1136.

    Article  CAS  Google Scholar 

  16. E. V. Ishchenko, R. V. Gulyaev, T. Y. Kardash, A. V. Ishchenko, E. Y. Gerasimov, V. I. Sobolev, and V. M. Bondareva. Appl. Catal. A-Gen., 2017, 534, 58–69.

    Article  CAS  Google Scholar 

  17. E. V. Ishchenko, T. V. Andrushkevich, G. Y. Popova, Y. A. Chesalov, L. M. Plyasova, A. V. Ishchenko, T. Y. Kardash, and L. S. Dovlitova. Catal. Ind., 2011, 2, 291–298.

    Article  Google Scholar 

  18. E. V. Ishchenko, T. V. Andrushkevich, G. Y. Popova, T. Y. Kardash, A. V. Ishchenko, L. S. Dovlitova, and Y. A. Chesalov. Appl. Catal. A-Gen., 2014, 476, 91–102.

    Article  CAS  Google Scholar 

  19. G. Ashiotis, A. Deschildre, Z. Nawaz, J. P. Wright, D. Karkoulis, F. E. Picca, and J. Kieffer. J. Appl. Crystallogr., 2015, 48, 510–519.

    Article  CAS  Google Scholar 

  20. D. A. Svintsitskiy, L. S. Kibis, D. A. Smirnov, A. N. Suboch, O. A. Stonkus, O. Y. Podyacheva, A. I. Boronin, and Z. R. Ismagilov. Appl. Surf. Sci., 2018, 435, 1273–1284.

    Article  CAS  Google Scholar 

  21. D. A. Svintsitskiy, L. S. Kibis, A. I. Stadnichenko, V. I. Zaikovskii, S. V. Koshcheev, and A. I. Boronin. Kinet. Catal., 2013, 54, 497–504.

    Article  CAS  Google Scholar 

  22. D. A. Svintsitskiy, E. M. Slavinskaya, T. Y. Kardash, V. I. Avdeev, B. V. Senkovskiy, S. V. Koscheev, and A. I. Boronin. Appl. Catal. A-Gen., 2016, 510, 64–73.

    Article  CAS  Google Scholar 

  23. T. Y. Kardash, E. V. Lazareva, D. A. Svintsitskiy, A. V. Ishchenko, V. M. Bondareva, and R. B. Neder. RSC Adv., 2018, 8, 35903–35916.

    Article  CAS  Google Scholar 

  24. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben. Handbook of X-ray Photoelectron Spectroscopy. USA, Perkin-Elmer Corp, Eden Prairie: Minnesota, 1992.

    Google Scholar 

  25. T. Y. Kardash, L. M. Plyasova, V. M. Bondareva, and A. N. Shmakov. J. Struct. Chem., 2008, 49, 701–707.

    Article  CAS  Google Scholar 

  26. H. Werner, O. Timpe, D. Herein, and Y. Uchida. Catal. Lett., 1997, 44, 153–163.

    Article  CAS  Google Scholar 

  27. Celaya Sanfiz, T. W. Hansen, F. Girgsdies, O. Timpe, E. Rödel, T. Ressler, A. Trunschke, and R. Schlögl. Top. Catal., 2008, 50, 19–32.

    Article  Google Scholar 

  28. Powder Diffraction File. PDF-2. International Center for Diffraction Data, USA, 2009.

  29. B. O. Marinder. Mater. Res. Bull., 1975, 10, 909–914.

    Article  CAS  Google Scholar 

  30. B. O. Marinder, E. Dorm, M. Seleborg, K. Motzfeldt, O. Theander, and H. Flood. Acta. Chem. Scand., 1962, 16, 293–296.

    Article  CAS  Google Scholar 

  31. A. A. Bolzan, B. J. Kennedy, and C. J. Howard. Aust. J. Chem., 1995, 48, 1473–1477.

    Article  CAS  Google Scholar 

  32. S. Ishikawa, D. Kobayashi, T. Konya, S. Ohmura, T. Murayama, N. Yasuda, M. Sadakane, and W. Ueda. J. Phys. Chem. C., 2015, 119, 7195–7206.

    Article  CAS  Google Scholar 

  33. P. Botella, J. M. Lopez Nieto, B. Solsona, A. Mifsud, and F. Marquez. J. Catal., 2002, 455, 445–455.

    Article  Google Scholar 

  34. N. S. McIntyre, D. D. Johnston, L. L. Coatsworth, R. D. Davidson, and J. R. Brown. Surf. Interface Anal., 1990, 15, 265–272.

    Article  CAS  Google Scholar 

  35. L. D. Lopez-Carren, G. Benıtez, L. Viscido, J. M. Heras, F. Yubero, J. P. Espino, and A. R. Gonzalez-Elipe. Surf. Sci., 1998, 402–404, 174–177.

    Article  Google Scholar 

  36. G. Silversmit, D. Depla, H. Poelman, G. B. Marin, and R. De Gryse. J. Electron Spectrosc., 2004, 135, 167–175.

    Article  CAS  Google Scholar 

  37. A. C. Sanfiz, T. W. Hansen, D. Teschner, P. Schnörch, F. Girgsdies, A. Trunschke, R. Schlögl, M.H. Looi, and B. A. H. Sharifah. J. Phys. Chem. C, 2010, 114, 1912–1921.

    Article  CAS  Google Scholar 

  38. M. Aufray, S. Menuel, Y. Fort, J. Eschbach, D. Rouxel, and B. Vincent. J. Nanosci. Nanotechnol., 2009, 9, 4780–4785.

    Article  CAS  Google Scholar 

  39. C. J. Hawley, B. R. Beatty, G. Chen, and J. E. Spanier. Cryst. Growth Des., 2012, 12, 2789–2793.

    Article  CAS  Google Scholar 

  40. T. Y. Kardash, L. M. Plyasova, V. M. Bondareva, T. V. Andrushkevich, A. V. Ishchenko, Y. A. Chesalov, and L. S. Dovlitova. Kinet. Catal., 2009, 50, 48–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the European Synchrotron Radiation Facility (ESRF) for providing the access to the experimental equipment and Dr. Yusenko for his help with the experiment.

Funding

This work was supported by the Russian Science Foundation (project No. 17-73-20073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Kardash.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 10, pp. 1664–1676.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kardash, T.Y., Marchuk, A.S., Ishchenko, A.V. et al. In situ Study of Structural Transformations of the Active Phase of VMoNbTeO Catalysts under Reduction Conditions. J Struct Chem 60, 1599–1611 (2019). https://doi.org/10.1134/S0022476619100056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619100056

Keywords

Navigation