Abstract
The structure of near-bottom gas hydrate samples obtained in Lake Baikal during the expeditions in 2005–2018 are reported. The hydrates contain mainly methane and ethane. More than 85% of the samples contain hydrate of cubic structure I (sI) with up to 4.2 mol.% ethane. The concentration of ethane in the samples containing hydrate of cubic structure II (sII) is 12–14 mol.%. Refined unit cell parameters of natural hydrates are in good agreement with the data obtained in the studies of artificially synthesized hydrates. Possible mechanisms for the formation of sII hydrates are discussed. Some arguments are provided in favor of a probable presence of dispersed gas hydrates in the near-bottom layers of Baikal sediments and the possibility of small variations in the composition of hydrate gas in different hydrate fragments taken from the same hydrate layer.
Similar content being viewed by others
References
V. A. Istomin and V. S. Yakushev. Gazovye Gidraty v Prirodnyh Usloviyah (Gas Hydrates in Nature) [in Russian]. Nedra: Moscow, 1992, 236.
E. D. Sloan and C. A. Koh. Clathrate Hydrates of Natural Gases. 3d ed. CRC Press, Boca Raton. London-New York, 2008, 721.
V. A. Istomin and V. G. Kwon. Preduprezdenie i Likvidaciya Gazovyh Gidratov v Sistemah Dobychi Gaza (Prevention and elimination of Gas Hydrates in Gas Production Systems) [in Russian]. “IRC GAZPROM” Ltd.: Moscow, 2004, 509.
J. Carroll. Natural Gas Hydrates, A Guide for Engineers. 2nd ed. Gulf ProfesKC-Ional Publ.: Burlington, 2009, 275.
V. A. Solov’ev. Ross. Khim. Zh. [in Russian], 2003, 47(3).
V. A. Solov’ev. Geol. Geofiz. [in Russian], 2002, 43(7).
Z. R. Chong, S. H. B. Yang, P. Babu, P. Linga, and X.S. Li. Appl. Energ., 2016, 162, 1633.
Y. F. Makogon. Ross. Khim. Zh. [in Russian], 2003, 47(3), 70.
G. D. Ginsburg and V. A. Soloviev. Submarine Gas Hydrates. VNII Okeangeologia: St. Petersburg, Russia, 1998, 321.
V. S. Yakushev. Prirodnyj Gaz i Gazovye Gidraty V Kriolitozone (Natural Gas and Gas Hydrates in Permafrost) [in Russian]. GAZPROM-VNIIGAZ: Moscow, 2009, 192.
X.-S. Li, C.-G. Xu, Y. Zhang, X.-K. Ruan, and G. L. Y. Wang. Appl. Energ. 2016, 172, 286.
Y. Cui, C. Lu, M. Wu, Y. Peng, Y. Yao, and W. Luo. Adv. Geo-Energ. Res., 2018, 2(1), 53.
A. Y. Manakov, V. I. Kosyakov, and S. F. Solodovnikov. Structural Chemistry of Clathrate Hydrates and Related Compounds. In: Comprehensive Supramolecular Chemistry II. / Ed. J. L. Atwood. Elsevier: Oxford, 2017, 161–206.
S. Soltanimehr, J. Javanmardi, and K. Nasrifar. J. Chem. Eng. Data, 2017, 62(7), 2143.
E. D. Sloan. Clathrate Hydrates of Natural Gases, 2nd ed. Dekker Marcel, 1998.
S. Subramanian, R. A. Kini, S. F. Dec, and E. D. Sloan Jr. Chem. Eng. Sci., 2000, 55, 1981.
O. M. Khlystov, S. Nishio, A. Y. Manakov, H. Sugiyama, A. V. Khabuev, O. V. Belousov, and M. A. Grachev. J. Russ. Geol. Geophys., 2014, 55(9), 1122.
O. Khlystov, M. De Batist, H. Shoji, A. Hachikubo, S. Nishio, L. Naudts, J. Poort, A. Khabuev, O. Belousov, A. Manakov, and G. Kalmychkov. J. Asian Earth Sci., 2013, 62, 162.
M. I. Kuzmin, G. V. Kalmychkov, V. F. Geletyi, V. A. Gnilusha, A. V. Goreglyad, B. N. Khakhaev, L. A. Pevzner, T. Kawai, N. Ioshida, A. D. Duchkov, V. A. Ponomarchuk, A. E. Komorovich, N. M. Bazhin, G. A. Makhov, Y. A. Dyadin, F. A. Kuznetov, E. G. Larionov, A. Y. Manakov, B. S. Smolyakov, M. M. Mandel’baum, and N. K. Zheleznyakov. Dokl. Akad. Nauk [in Russian], 1998, 362(4), 541.
M. Kida, O. Khlystov, T. Zemskaya, N. Takahashi, H. Minami, H. Sakagami, A. Krylov, A. Hachikubo, S. Yamashita, H. Shoji, J. Poort, and L. Naudts. Geophys. Res. Lett., 2006, 33(24), L24603.
O. M. Khlystov, A. V. Khabuev, H. Minami, A. Hachikubo, and A. A. Krylov. Limnol. Freshwater Biol., 2018. 1, 66.
O. M. Khlystov, J. Poort, A. Mazzini, G. G. Akhmanov, H. Minami, A. Hachikubo, A. B. Khabuev, A. V. Kazakov, M. De Batist, L. Naudts, A. G. Chenskiy, and S. S. Vorobeva. Mar. Pet. Geol., 2019, 102, 580.
A. I. Ancharov, A. Y. Manakov, N. A. Mezentsev, B. P. Tolochko, M. A. Sheromov, V. M. Tsukanov. Nucl. Instrum. Methods Phys. Res., A, 2001, A470, 80.
K. Rottger, A. Endriss, J. Ihringer, S. Doyle, and W. F. Kuhs. Acta Cryst., 1994, B50, 644.
B. Rupp. XLAT. Scr. Metall., 1988, 22, 1.
S. M. Everett, C. J. Rawn, B. C. Chakoumakos, D. J. Keffer, A. Huq, and T. J. Phelps. Am. Mineral., 2015, 100, 1203.
H. Lu, I. Moudrakovski, M. Riedel, G. Spence, R. Dutrisac, J. Ripmeester, F. Wright, and S. Dallimore. J. Geophys. Res., 2005, 110, B10204.
K. A. Udachin, H. Lu, G. D. Enright, C. I. Ratcliffe, J. A. Ripmeester, N. R. Chapman, M. Riedel, and G. Spence. Angew. Chem. Int. Ed., 2007, 46, 8220.
S. Takeya, T. Uchida, Y. Kamata, J. Nagao, M. Kida, H. Minami, H. Sakagami, A. Hachikubo, N. Takahashi, H. Shoji, O. Khlystov, M. Grachev, and V. Soloviev. Angew. Chem. Int. Ed., 2005, 44, 6928.
K. C. Hester, Z. Huo, A. L. Ballard, C. A. Koh, K. T. Miller, and E. D. Sloan. J. Phys. Chem. B, 2007, 111, 8830.
W. F. Kuhs, G. Genov, D. K. Staykova, and T. Hansen. Phys. Chem. Chem. Phys., 2004, 6, 4917.
A. G. Ogienko, A. V. Kurnosov, A. Y. Manakov, E. G. Larionov, A. I. Ancharov, M. A. Sheromov, and A. N. Nesterov. J. Phys. Chem. B, 2006, 110, 2840.
S. Takeya, M. Kida, H. Minami, H. Sakagami, A. Hachikubo, N. Takahashi, H. Shoji, V. Soloviev, K. Wallmann, N. Biebow, A. Obzhirov, A. Salomatin, and J. Poort. Chem. Eng. Sci., 2006, 61, 2670.
V. P. Shpakov, J. S. Tse, C. A. Tulk, B. Kvamme, and V. R. Belosludov. Chem. Phys. Lett., 1998, 282, 107.
K. A. Udachin, H. Lu, G. D. Enright, C. I. Ratcliffe, J. A. Ripmeester, N. R. Chapman, M. Riedel, and G. Spence. Angew. Chem. Int. Ed., 2007, 46, 8220.
A. Y. Manakov, O. M. Khlystov, A. Hachikubo, and A. G. Ogienko. Russ. Geol. Geophys., 2013, 54(4), 475.
A. V. Milkov. Org. Geochem., 2005, 36, 681.
C. Bourry, B. Chazallon, J. L. Charlou, J. P. Donval, L. Ruffine, P. Henry, L. Geli, M. N. Çagatay, S. İnan, and M. Moreau. Chem. Geol., 2009, 264, 197.
S. A. Klapp, M. M. Murshed, T. Pape, H. Klein, G. Bohrmann, P. G. Brewer, and W. F. Kuhs. Earth Planet. Sci. Lett., 2010, 299, 207.
A. Hachikubo, K. Yanagawa, H. Tomaru, H. Lu, and R. Matsumoto. Energies, 2015, 8, 4647.
Funding
The field work was supported by LIN SB RAS (project AAAA-A16-116122110064-7) and by Japan Society for the Promotion of Science (grants KAKENHI 26303021 (to A.H.), 24404026 (H.M.), 16H05760 (H.M.), 17H03300 (S.Y.)) and by the presidential grant of Kitami Institute of Technology, Japan.
The laboratory studies were performed according to the item V.44.4.9 “Development of scientific foundations in the physical chemistry of clathrate (gaseous), half-clathrate, and ionic clathrate hydrates” within the basic research program of the Russian Academy of Sciences “Development of scientific foundations of directed synthesis of new inorganic and coordination compounds and functional materials based on them.”
Author information
Authors and Affiliations
Corresponding author
Additional information
Conflict of Interests
The authors declare that they have no conflict of interests.
Russian Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 9, pp. 1497–1516.
Rights and permissions
About this article
Cite this article
Manakov, A.Y., Khlystov, O.M., Hachikubo, A. et al. Structural Studies of Lake Baikal Natural Gas Hydrates. J Struct Chem 60, 1437–1455 (2019). https://doi.org/10.1134/S0022476619090087
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0022476619090087