Skip to main content
Log in

Structural Studies of Lake Baikal Natural Gas Hydrates

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The structure of near-bottom gas hydrate samples obtained in Lake Baikal during the expeditions in 2005–2018 are reported. The hydrates contain mainly methane and ethane. More than 85% of the samples contain hydrate of cubic structure I (sI) with up to 4.2 mol.% ethane. The concentration of ethane in the samples containing hydrate of cubic structure II (sII) is 12–14 mol.%. Refined unit cell parameters of natural hydrates are in good agreement with the data obtained in the studies of artificially synthesized hydrates. Possible mechanisms for the formation of sII hydrates are discussed. Some arguments are provided in favor of a probable presence of dispersed gas hydrates in the near-bottom layers of Baikal sediments and the possibility of small variations in the composition of hydrate gas in different hydrate fragments taken from the same hydrate layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Istomin and V. S. Yakushev. Gazovye Gidraty v Prirodnyh Usloviyah (Gas Hydrates in Nature) [in Russian]. Nedra: Moscow, 1992, 236.

    Google Scholar 

  2. E. D. Sloan and C. A. Koh. Clathrate Hydrates of Natural Gases. 3d ed. CRC Press, Boca Raton. London-New York, 2008, 721.

    Google Scholar 

  3. V. A. Istomin and V. G. Kwon. Preduprezdenie i Likvidaciya Gazovyh Gidratov v Sistemah Dobychi Gaza (Prevention and elimination of Gas Hydrates in Gas Production Systems) [in Russian]. “IRC GAZPROM” Ltd.: Moscow, 2004, 509.

    Google Scholar 

  4. J. Carroll. Natural Gas Hydrates, A Guide for Engineers. 2nd ed. Gulf ProfesKC-Ional Publ.: Burlington, 2009, 275.

    Google Scholar 

  5. V. A. Solov’ev. Ross. Khim. Zh. [in Russian], 2003, 47(3).

  6. V. A. Solov’ev. Geol. Geofiz. [in Russian], 2002, 43(7).

  7. Z. R. Chong, S. H. B. Yang, P. Babu, P. Linga, and X.S. Li. Appl. Energ., 2016, 162, 1633.

    Article  Google Scholar 

  8. Y. F. Makogon. Ross. Khim. Zh. [in Russian], 2003, 47(3), 70.

    Google Scholar 

  9. G. D. Ginsburg and V. A. Soloviev. Submarine Gas Hydrates. VNII Okeangeologia: St. Petersburg, Russia, 1998, 321.

    Google Scholar 

  10. V. S. Yakushev. Prirodnyj Gaz i Gazovye Gidraty V Kriolitozone (Natural Gas and Gas Hydrates in Permafrost) [in Russian]. GAZPROM-VNIIGAZ: Moscow, 2009, 192.

    Google Scholar 

  11. X.-S. Li, C.-G. Xu, Y. Zhang, X.-K. Ruan, and G. L. Y. Wang. Appl. Energ. 2016, 172, 286.

    Article  CAS  Google Scholar 

  12. Y. Cui, C. Lu, M. Wu, Y. Peng, Y. Yao, and W. Luo. Adv. Geo-Energ. Res., 2018, 2(1), 53.

    Article  Google Scholar 

  13. A. Y. Manakov, V. I. Kosyakov, and S. F. Solodovnikov. Structural Chemistry of Clathrate Hydrates and Related Compounds. In: Comprehensive Supramolecular Chemistry II. / Ed. J. L. Atwood. Elsevier: Oxford, 2017, 161–206.

    Chapter  Google Scholar 

  14. S. Soltanimehr, J. Javanmardi, and K. Nasrifar. J. Chem. Eng. Data, 2017, 62(7), 2143.

    Article  CAS  Google Scholar 

  15. E. D. Sloan. Clathrate Hydrates of Natural Gases, 2nd ed. Dekker Marcel, 1998.

  16. S. Subramanian, R. A. Kini, S. F. Dec, and E. D. Sloan Jr. Chem. Eng. Sci., 2000, 55, 1981.

    Article  CAS  Google Scholar 

  17. O. M. Khlystov, S. Nishio, A. Y. Manakov, H. Sugiyama, A. V. Khabuev, O. V. Belousov, and M. A. Grachev. J. Russ. Geol. Geophys., 2014, 55(9), 1122.

    Article  Google Scholar 

  18. O. Khlystov, M. De Batist, H. Shoji, A. Hachikubo, S. Nishio, L. Naudts, J. Poort, A. Khabuev, O. Belousov, A. Manakov, and G. Kalmychkov. J. Asian Earth Sci., 2013, 62, 162.

    Article  Google Scholar 

  19. M. I. Kuzmin, G. V. Kalmychkov, V. F. Geletyi, V. A. Gnilusha, A. V. Goreglyad, B. N. Khakhaev, L. A. Pevzner, T. Kawai, N. Ioshida, A. D. Duchkov, V. A. Ponomarchuk, A. E. Komorovich, N. M. Bazhin, G. A. Makhov, Y. A. Dyadin, F. A. Kuznetov, E. G. Larionov, A. Y. Manakov, B. S. Smolyakov, M. M. Mandel’baum, and N. K. Zheleznyakov. Dokl. Akad. Nauk [in Russian], 1998, 362(4), 541.

    CAS  Google Scholar 

  20. M. Kida, O. Khlystov, T. Zemskaya, N. Takahashi, H. Minami, H. Sakagami, A. Krylov, A. Hachikubo, S. Yamashita, H. Shoji, J. Poort, and L. Naudts. Geophys. Res. Lett., 2006, 33(24), L24603.

    Article  CAS  Google Scholar 

  21. O. M. Khlystov, A. V. Khabuev, H. Minami, A. Hachikubo, and A. A. Krylov. Limnol. Freshwater Biol., 2018. 1, 66.

    Article  Google Scholar 

  22. O. M. Khlystov, J. Poort, A. Mazzini, G. G. Akhmanov, H. Minami, A. Hachikubo, A. B. Khabuev, A. V. Kazakov, M. De Batist, L. Naudts, A. G. Chenskiy, and S. S. Vorobeva. Mar. Pet. Geol., 2019, 102, 580.

    Article  Google Scholar 

  23. A. I. Ancharov, A. Y. Manakov, N. A. Mezentsev, B. P. Tolochko, M. A. Sheromov, V. M. Tsukanov. Nucl. Instrum. Methods Phys. Res., A, 2001, A470, 80.

    Article  Google Scholar 

  24. K. Rottger, A. Endriss, J. Ihringer, S. Doyle, and W. F. Kuhs. Acta Cryst., 1994, B50, 644.

    Article  Google Scholar 

  25. B. Rupp. XLAT. Scr. Metall., 1988, 22, 1.

    Article  Google Scholar 

  26. S. M. Everett, C. J. Rawn, B. C. Chakoumakos, D. J. Keffer, A. Huq, and T. J. Phelps. Am. Mineral., 2015, 100, 1203.

    Article  Google Scholar 

  27. H. Lu, I. Moudrakovski, M. Riedel, G. Spence, R. Dutrisac, J. Ripmeester, F. Wright, and S. Dallimore. J. Geophys. Res., 2005, 110, B10204.

    Article  CAS  Google Scholar 

  28. K. A. Udachin, H. Lu, G. D. Enright, C. I. Ratcliffe, J. A. Ripmeester, N. R. Chapman, M. Riedel, and G. Spence. Angew. Chem. Int. Ed., 2007, 46, 8220.

    Article  CAS  Google Scholar 

  29. S. Takeya, T. Uchida, Y. Kamata, J. Nagao, M. Kida, H. Minami, H. Sakagami, A. Hachikubo, N. Takahashi, H. Shoji, O. Khlystov, M. Grachev, and V. Soloviev. Angew. Chem. Int. Ed., 2005, 44, 6928.

    Article  CAS  Google Scholar 

  30. K. C. Hester, Z. Huo, A. L. Ballard, C. A. Koh, K. T. Miller, and E. D. Sloan. J. Phys. Chem. B, 2007, 111, 8830.

    Article  CAS  Google Scholar 

  31. W. F. Kuhs, G. Genov, D. K. Staykova, and T. Hansen. Phys. Chem. Chem. Phys., 2004, 6, 4917.

    Article  CAS  Google Scholar 

  32. A. G. Ogienko, A. V. Kurnosov, A. Y. Manakov, E. G. Larionov, A. I. Ancharov, M. A. Sheromov, and A. N. Nesterov. J. Phys. Chem. B, 2006, 110, 2840.

    Article  CAS  Google Scholar 

  33. S. Takeya, M. Kida, H. Minami, H. Sakagami, A. Hachikubo, N. Takahashi, H. Shoji, V. Soloviev, K. Wallmann, N. Biebow, A. Obzhirov, A. Salomatin, and J. Poort. Chem. Eng. Sci., 2006, 61, 2670.

    Article  CAS  Google Scholar 

  34. V. P. Shpakov, J. S. Tse, C. A. Tulk, B. Kvamme, and V. R. Belosludov. Chem. Phys. Lett., 1998, 282, 107.

    Article  CAS  Google Scholar 

  35. K. A. Udachin, H. Lu, G. D. Enright, C. I. Ratcliffe, J. A. Ripmeester, N. R. Chapman, M. Riedel, and G. Spence. Angew. Chem. Int. Ed., 2007, 46, 8220.

    Article  CAS  Google Scholar 

  36. A. Y. Manakov, O. M. Khlystov, A. Hachikubo, and A. G. Ogienko. Russ. Geol. Geophys., 2013, 54(4), 475.

    Article  Google Scholar 

  37. A. V. Milkov. Org. Geochem., 2005, 36, 681.

    Article  CAS  Google Scholar 

  38. C. Bourry, B. Chazallon, J. L. Charlou, J. P. Donval, L. Ruffine, P. Henry, L. Geli, M. N. Çagatay, S. İnan, and M. Moreau. Chem. Geol., 2009, 264, 197.

    Article  CAS  Google Scholar 

  39. S. A. Klapp, M. M. Murshed, T. Pape, H. Klein, G. Bohrmann, P. G. Brewer, and W. F. Kuhs. Earth Planet. Sci. Lett., 2010, 299, 207.

    Article  CAS  Google Scholar 

  40. A. Hachikubo, K. Yanagawa, H. Tomaru, H. Lu, and R. Matsumoto. Energies, 2015, 8, 4647.

    Article  CAS  Google Scholar 

Download references

Funding

The field work was supported by LIN SB RAS (project AAAA-A16-116122110064-7) and by Japan Society for the Promotion of Science (grants KAKENHI 26303021 (to A.H.), 24404026 (H.M.), 16H05760 (H.M.), 17H03300 (S.Y.)) and by the presidential grant of Kitami Institute of Technology, Japan.

The laboratory studies were performed according to the item V.44.4.9 “Development of scientific foundations in the physical chemistry of clathrate (gaseous), half-clathrate, and ionic clathrate hydrates” within the basic research program of the Russian Academy of Sciences “Development of scientific foundations of directed synthesis of new inorganic and coordination compounds and functional materials based on them.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Manakov.

Additional information

Conflict of Interests

The authors declare that they have no conflict of interests.

Russian Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 9, pp. 1497–1516.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manakov, A.Y., Khlystov, O.M., Hachikubo, A. et al. Structural Studies of Lake Baikal Natural Gas Hydrates. J Struct Chem 60, 1437–1455 (2019). https://doi.org/10.1134/S0022476619090087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619090087

Keywords

Navigation