Skip to main content
Log in

Molecular Dynamics Study of the Deposition of Palladium-Silver Films on a Silver Substrate

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The formation of PdxAg1-x thin films from the gas phase on silver substrates is modeled by molecular dynamics. The effect of substrate temperature on the structure of coatings of various compositions (x = 0, 0.25, 0.5, 0.75, 1) is studied in the range from 300 K to 900 K. The films are shown to have an unevenly deformed fcc structure over the entire range of considered temperatures and compositions. The surface of the coating is not smooth; it contains holes and cavities with a characteristic height difference of several angstroms. No misfit dislocations are formed in the studied systems. Higher substrate temperatures during the deposition of the coating lead to the increased average adsorption energy in the formed layer (which is true for all elemental compositions of the films.) This is caused by the fact that diffusion rate is higher on hotter substrates, and the surface of the coating is therefore smoothed. It is notable that the change of adsorption energy as a function of the substrate temperature during film deposition is directly proportional to the palladium content in the film. A high accuracy (above 0.01 eV) procedure is proposed for the calculation of cohesive energy in the film. This characteristic is shown to be virtually independent on the substrate temperature during nanolayer deposition. This is a direct indication that the structure of the coating volume is not changed, regardless of its elemental composition, as the temperature of formation increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Q. Lu, J. C. Diniz da Costa, M. Duke, S. Giessler, R. Socolow, and R. H. Williams. J. Colloid Interface Sci., 2007, 314, 589–603.

    Article  CAS  PubMed  Google Scholar 

  2. J. M. Sanehez Hervás, M. Maroño, and A. Cabanillas. State of the Art Review on Separation of Hydrogen by Membranes and Water Gas Shift Reaction Catalysts / CHRISGAS project, 2005,13, 103.

    Google Scholar 

  3. S. C. A. Kluiters. Status Review on Membrane Systems for Hydrogen Separation. The Netherlands. Energy Center of the Netherlands Petten, 2004, 29.

  4. S. Adhikari and S. Fernando. Ind. Eng. Chem. Res., 2006, 45(3), 875–881.

    Article  CAS  Google Scholar 

  5. N. A. Al-Mufachi, N. V. Rees, and R. Steinberger-Wilkens. Renew. Sust. Energ. Rev., 2015, 47, 540–551.

    Article  CAS  Google Scholar 

  6. A. G. Knapton. Platinum Met. Rev., 1977, 21(3), 44–50.

    CAS  Google Scholar 

  7. S. N. Paglieri and J. D. Way. Sep. Purif. Rev., 2002, 31, 1–169.

    Article  CAS  Google Scholar 

  8. T. B. Flanagan and W. A. Oates. Ann. Rev. Mater. Sci., 1991, 21, 269–304.

    Article  CAS  Google Scholar 

  9. B. McCool, G. Xomeritakis, and Y. S. Lin. J. Membr. Sci., 1999, 161, 67–76.

    Article  CAS  Google Scholar 

  10. C. Ling, L. S. Flecha, and D. Sholl. J. Memb. Sci., 2011, 371, 189–196.

    Article  CAS  Google Scholar 

  11. X. W. Zhou and H. N. G. Wadley. J. Appl. Phys., 1998, 84(4), 2301–2315.

    Article  CAS  Google Scholar 

  12. X. W. Zhou and H. N. G. Wadley. J. Appl. Phys., 2000, 87(3), 553–563.

    Article  CAS  Google Scholar 

  13. X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford-Long, G. D. W. Smith, P. H. Clifton, R. L. Martens, and T. F. Kelly. Acta Mater., 2001, 49(3), 4005–4015.

    Article  CAS  Google Scholar 

  14. X. W. Zhou and H. N. G. Wadley. Acta Mater., 1999, 47(3), 1063–1078.

    Article  CAS  Google Scholar 

  15. X. W. Zhou and H. N. G. Wadley. In: Surface and Interfaces in Nanostructed Materials and Trends in LIGA, Miniaturization, and Nanoscale Materials. TMS (Warrendale, PA), MPMD Fifth Global Innovations Proceedings, 2004, 345–354.

    Google Scholar 

  16. X. W. Zhou, D. K. Ward, B. M. Wong, J. A. Doty, F. P. Zimmerman, G. N. Nielson, J. L. Cruz-Campa, V. P. Gupta, J. E. Granata, J. J. Chavez, and D. Zubia. Phys. Rev. B, 2012, 85, 245302.

    Article  CAS  Google Scholar 

  17. A. M. Igoshkin, I. F. Golovnev, and V. M. Fomin. Phys. Mesomech., 2013, 16, 200.

    Article  Google Scholar 

  18. Y Li. and G. Wahnström. Phys. Rev. B, 1992, 46(22), 14528.

    Article  CAS  Google Scholar 

  19. T. Muranaka, K. Uehara, M. Takasu, and Y. Hiwatari. Mol. Simul., 1994, 12(3-6), 329–341.

    Article  CAS  Google Scholar 

  20. S. Ramos de Debiaggia, E. A. Crespo, F. U. Braschi, E. M. Bringa, M. L. All, and M. Ruda. Int. J. Hydrogen Energy, 2014, 39(3), 8590–8595.

    Article  CAS  Google Scholar 

  21. N. Kenji and M. Koji. J. Soc. Mater. Sci., 2017, 65(2), 148.

    Google Scholar 

  22. X. W. Zhou, F. El Gabaly, V. Stavila, and M. D. Allendorf. J. Phys. Chem. C, 2016, 120(3), 7500–7509.

    Article  CAS  Google Scholar 

  23. M. S. Daw and M. I. Baskes. Phys. Rev. B, 1984, 29(12), 6443.

    Article  CAS  Google Scholar 

  24. M.S. Daw and M.I. Baskes. Phys. Rev. Lett., 1983, 50(17), 1285.

    Article  CAS  Google Scholar 

  25. X. W. Zhou, J. A. Zimmerman, B. M. Wong, and J. J. Hoyt. J. Mater. Res., 2008, 23(3), 704.

    Article  CAS  Google Scholar 

  26. L. M. Hale, B. M. Wong, J. A. Zimmerman, and X. W. Zhou. Modelling Simul. Mater. Sci. Eng., 2013, 21, 45005.

    Article  CAS  Google Scholar 

  27. M. E. Tuckerman, J. Alejandre, R. Lopez-Rendon, A. L. Jochim, and G. J. Martyna. J. Phys. A: Math. Gen., 2006, 39(19), 5629.

    Article  CAS  Google Scholar 

  28. J. R. Ray and A. Rahman. J. Chem. Phys., 1984, 80(3), 4423–4428.

    Article  CAS  Google Scholar 

  29. E. I. Golovnyova, I. F. Golovnyov, and V. M. Fomin. Fiz. Mezomekh. [In Russian], 2003, 6(3), 5–10.

    Google Scholar 

  30. A. V. Bolesta, I. F. Golovnyov, and V. M. Fomin. Fiz. Mezomekh. [In Russian], 2001, 4(3), 5–10.

    CAS  Google Scholar 

  31. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak. J. Chem. Phys., 1984, 81(3), 3684–3690.

    Article  CAS  Google Scholar 

  32. J. P. Chan and R. Hultgren. J. Chem. Thermodyn., 1969, 7(3), 45–50.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project No. 18-32-01059 mol_a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Igoshkin.

Additional information

Conflict of Interests

The author declares that he has no conflict of interests.

Russian Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 8, pp. 1288–1297.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igoshkin, A.M. Molecular Dynamics Study of the Deposition of Palladium-Silver Films on a Silver Substrate. J Struct Chem 60, 1234–1242 (2019). https://doi.org/10.1134/S0022476619080043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619080043

Keywords

Navigation