Skip to main content
Log in

XPS Study of the Process of HgCdTe Oxidation in a Glow Discharge Oxygen Plasma

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Initial stages of HgCdTe oxidation in a glow discharge plasma in O2 atmosphere are first studied using the XPS method. The chemical composition of the growing native oxide layer is investigated and the oxidation kinetics is revealed. It is experimentally established that the mechanism of HgCdTe oxidation changes as the oxide thickness reaches 2-3 nm due to the change of the limiting stage of the chemical reaction. The composition of the formed oxide is varies with depth and is characterized by low mercury content. It is suggested that the diffusion of oxygen to the oxide–semiconductor interface and its predominant interaction with tellurium are the main mechanism of the native MCT oxide growth, so that the oxide region bordering the substrate is ∼10% oxygen depleted. The obtained results are discussed and compared with previously reported data on MCT oxidation in RF plasma and in liquid electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. C. Catagnus and C. T. Baker. U.S. Patent No.3,977,018. 1976.

    Google Scholar 

  2. Y. Nemirovsky and E. Finkman. J. Electrochem. Soc., 1979, 126, 768.

    Article  CAS  Google Scholar 

  3. T. S. Sun, S. P. Bucher, and N. E. Byer. J. Vac. Sci. Technol., 1980, 17, 1067.

    Article  CAS  Google Scholar 

  4. Y. Nemirovsky and R. Goshen. Appl. Phys. Lett., 1980, 37, 813.

    Article  CAS  Google Scholar 

  5. Y. Nemirovsky, R. Goshen, and I. Kidron. J. Appl. Phys., 1982, 53, 4888.

    Article  CAS  Google Scholar 

  6. J. A. Wilson, V. A. Cotton, J. Silberman, D. Laser, W. E. Spicer, and P. Morgen. J. Vac. Sci. Technol. A., 1983, 1, 1719.

    Article  CAS  Google Scholar 

  7. V. N. Ovsyuk, V. V. Vasil’ev, and Yu. P. Mashukov. Semicond., 2000, 34, 794.

    Article  CAS  Google Scholar 

  8. A. V. Sorochkin, V. S. Varavin, A. V. Predein, I. V. Sabinina, and M. V. Yakushev. Semicond., 2012, 46, 535.

    Article  CAS  Google Scholar 

  9. J. Zhang, G. A. Umana-Membreno, R. Gu, W. Lei, J. Antoszewski, J. M. Dell, and L. Faraone. J. Electron. Mater., 2015, 44, 2990.

    Article  CAS  Google Scholar 

  10. R. K. Bhan, V. Srivastava, R. S. Saxena, L. Sareen, R. Pal, and R. K. Sharma. Infrared Phys. Technol., 2010, 53, 404.

    Article  CAS  Google Scholar 

  11. P. Xu, G. Xu, K. Chu, N. Wang, Q. Zhou, Y. Tang, K. Zhang, and X. Li. Proc. SPIE., 2013, 8907, 890742.

    Article  CAS  Google Scholar 

  12. V. Damnjanovic and J. M. Elazar. 27th International Conference on Microelectronics Proceedings. 2010, 131.

  13. R. Fu, J. Pattison, A. Chen, and O. Nayfeh. Proc. SPIE., 2012, 8353, 835321.

    Article  CAS  Google Scholar 

  14. V. G. Kesler and E. R. Zakirov. 15th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM) Proceedings. 2014, 33.

  15. V. G. Kesler. J. Struct. Chem. 2011, 52(Suppl. 1), 153.

  16. V. G. Kesler, A. A. Guzev, A. P. Kovchavtsev, A. V. Tsarenko, and Z. V. Panova. Optoelectron. Instrument. Proc., 2014, 50, 87.

    Article  Google Scholar 

  17. Yu. G. Sidorov, S. A. Dvoretskii, V. S. Varavin, N. N. Mikhailov, M. V. Yakushev, and I. V. Sabinina. J. Semicond., 2001, 35, 1045.

    Article  CAS  Google Scholar 

  18. C. D. Wagner, W. M. Riggs, L. E. Davis, and J. F. Moulder. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation: USA, Eden Prairie, Minnesota. 1979.

    Google Scholar 

  19. NIST Electron Inelastic-Mean-Free-Path Database. Version 1.2. National Institute of Standards and Technology, Gaithersburg, USA.

  20. L. Q. Wu, Y. C. Li, S. Q. Li, Z. Z. Li, G. D. Tang, W. H. Qi, L. C. Xue, X. S. Ge, and L. L. Ding. AIP Adv., 2015, 5, 097210.

    Article  CAS  Google Scholar 

  21. S. S. Batsanov. Experimental foundations of structural chemistry. University Press: Russia, Moscow. 2008.

  22. J.-C. Dupin, D. Gonbeau, P. Vinatier, and A. Levasseur. Phys. Chem. Chem. Phys., 2000, 2, 1319.

    Article  CAS  Google Scholar 

  23. M. Naeem, S. K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S. Buzby, and S. I. Shah. Nanotechnology., 2006, 17, 2675.

    Article  CAS  PubMed  Google Scholar 

  24. Y. B. Lin, Y. M. Yang, B. Zhuang, S. L. Huang, L. P. Wu, Z. G. Huang, F. M. Zhang, and Y. W. Du. J. Phys. D: Appl. Phys., 2008, 41, 195007.

    Article  CAS  Google Scholar 

  25. P. Zhang, C. Gao, F. Lv, Y. Wei, C. Dong, C. Jia, Q. Liu, and D. Xue. Appl. Phys. Lett., 2014, 105, 152904.

    Article  CAS  Google Scholar 

  26. N. Cabrera and N. F. Mott. Rep. Progr. Phys., 1948, 12, 163.

    Article  Google Scholar 

  27. K. Hauffe and B. Z. Ilschner. Elektrochem., 1954, 58, 382.

    CAS  Google Scholar 

  28. A. T. Fromhold and E. L. Cook Jr. Phys. Rev., 1967, 158, 600.

    Article  CAS  Google Scholar 

  29. N. Berchenko, I. Izhnin, V. Yudenkov, M. Pociask, and V. Yakovyna. Surf. Interface Anal., 2010, 42, 902.

    Article  CAS  Google Scholar 

  30. C. Stahle, C. R. Helms, H. F. Schaake, R. L. Strong, A. Simmons, J. B. Pallix, and C. H. Becker. J. Vac. Sci. Technol. A. 1989, 7(1989), 474.

    Article  CAS  Google Scholar 

  31. G. D. Davis, T. S. Sun, S. P. Buchner, and N. E. Byer. J. Vac. Sci. Technol., 1981, 19, 472.

    Article  CAS  Google Scholar 

  32. V. P. Parkhutik, J. M. Martinez-Duart, J. Perriere, A. Climent, Yu. E. Makushok, and J. M. Albella. Thin Solid Films., 1991, 200, 129.

    Article  CAS  Google Scholar 

  33. M. Seelmann-Eggebert, G. Brandt, and H. J. Richter. J. Vac. Sci. Technol. A., 1984, 2, 11.

    Article  CAS  Google Scholar 

  34. U. Solzbach and H. J. Richter. Surf. Sci., 1980, 97, 191.

    Article  CAS  Google Scholar 

  35. W. H. Makky, A. Siddiqui, and C. H. Tang. J. Vac. Sci. Technol. A., 1986, 4, 3169.

    Article  CAS  Google Scholar 

  36. R. L. Strong. J. Vac. Sci. Technol. A., 1987, 5, 2003.

    Article  CAS  Google Scholar 

  37. J. A. Silberman, D. Laser, I. Lindau, W. E. Spicer, and J. A. Wilson. J. Vac. Sci. Technol. A., 1983, 1, 1706.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to M.V Yakushev for providing the MCT samples.

Funding

This work was supported by the Russian Foundation for Basic Research, project No. 13-07-12151-ofi-m.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Zakirov.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 7, pp. 1091-1099.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakirov, E.R., Kesler, V.G. XPS Study of the Process of HgCdTe Oxidation in a Glow Discharge Oxygen Plasma. J Struct Chem 60, 1043–1051 (2019). https://doi.org/10.1134/S0022476619070047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619070047

Keywords

Navigation