Journal of Structural Chemistry

, Volume 60, Issue 5, pp 763–771 | Cite as

Cation Distribution in the Composite Materials of the CaFe2O4-α-Fe2O3 Series

  • Yu. V. KnyazevEmail author
  • N. N. Shishkina
  • O. A. Bayukov
  • N. P. Kirik
  • L. A. Solovyov
  • A. M. Zhizhaev
  • E. V. Rabchevsky
  • A. G. Anshits


Structured composite materials CaFe2O4-α-Fe2O3 (α-Fe2O3 content is 2–82 wt.%) are obtained with the method of solid-phase synthesis at 1000 °C. The phase composition of the samples is studied using powder X-ray diffraction. It is shown that the content of CaFe2O4 and α-Fe2O3 phases changes linearly, depending on the composition of the starting material. The scanning electron microscopy data indicate the formation of a two-phase system α-Fe2O3-CaFe2O4. The Mössbauer spectroscopy data at room temperature testify the formation of cationic iron vacancies in the CaFe2O4 crystal structure in the absence of α-Fe2O3 structural defects. Cationic vacancies can be formed during the synthesis in the atmosphere of air.


solid-phase synthesis scanning electron microscopy Mössbauer spectroscopy cation vacancies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. H. Bragg. The London, Edinburgh, and Dublin Philos. Mag. J. Sci., 1915, 30, 305.CrossRefGoogle Scholar
  2. 2.
    D. Guin, B. Baruwati, and S. V. Manorama. J. Mol. Catal. A: Chem., 2005, 242, 26.CrossRefGoogle Scholar
  3. 3.
    F. P. Glasser and L. D. Glasser. J. Am. Ceram. Soc., 1963, 46, 377.CrossRefGoogle Scholar
  4. 4.
    B. F. Decker and J. S. Kasper. Acta Crystallogr., 1957, 10, 332.CrossRefGoogle Scholar
  5. 5.
    C. Do-Dinh, E. F. Bertaut, and J. Chappert. J. Phys. (Paris), 1969, 30, 566.CrossRefGoogle Scholar
  6. 6.
    H. Yamamoto, T. Okada, H. Watanabe et al. J. Phys. Soc. Jpn, 1968, 24, 275.CrossRefGoogle Scholar
  7. 7.
    D. Hirabayashi, T. Yoshikawa, Y. Kawamoto et al. Adv. Sci. Technol. (Durnten-Zurich, Switz.), 2006, 45, 2169.CrossRefGoogle Scholar
  8. 8.
    K. Obata, Y. Obukuro, S. Matsushima et al. J. Ceram. Soc. Jpn., 2013, 121, 766.CrossRefGoogle Scholar
  9. 9.
    E. V. Tsipis, Y. V. Pivak, J. C. Waerenborgh et al. Solid State Ionics, 2007, 178, 1428.CrossRefGoogle Scholar
  10. 10.
    V. V. Kharton, E. V. Tsipis, V. A. Kolotygin et al. J. Electrochem. Soc., 2008, 155, 13.CrossRefGoogle Scholar
  11. 11.
    B. F. Decker and J. S. Kasper. Acta Crystallogr., 1957, 10(4), 332.CrossRefGoogle Scholar
  12. 12.
    Bao-jin Xue, J. Luo, and F. Zhang. Energy, 2014, 68, 584.CrossRefGoogle Scholar
  13. 13.
    C. Shifu, Z. Wei, L. Wei et al. Chem. Eng. J., 2009, 155, b466.CrossRefGoogle Scholar
  14. 14.
    R. Wan, C. Jia, and W. Zhang. J. Alloys Compd., 2012, 544, 1.CrossRefGoogle Scholar
  15. 15.
    Y. Matsumoto, F. Nitta, J. Hombo et al. J. Electrochem. Soc., 1991, 138, 1701.CrossRefGoogle Scholar
  16. 16.
    Y. Matsumoto, J. Hombo, and F. Nitta. J. Appl. Phys., 1989, 66, 5109.CrossRefGoogle Scholar
  17. 17.
    Y. Matsumoto, M. Obata, and J. Hombo. J. Phys. Chem., 1994, 98, 2950.CrossRefGoogle Scholar
  18. 18.
    G. V. Samsonov. Physical and Mechanical Properties of Oxides. Handbook [in Russian]. Metallurgy: Moscow, 1978.Google Scholar
  19. 19.
    Reactions in the Solid State. / Eds. M. Brown, D. Dollimore, A. Knox Galwey. Vol. 22. Elsevier: Amsterdam, 1980, 340.Google Scholar
  20. 20.
    B. Phillips and A. Muan. J. Am. Ceram. Soc., 1958, 41, 445.CrossRefGoogle Scholar
  21. 21.
    O. M. Sharonova, N. N. Anshits, L. A. Solovyov et al. Fuel, 2013, 111, 332.CrossRefGoogle Scholar
  22. 22.
    A. Hudson and H. J. Whitfield. J. Chem. Soc. (A), 1967, 376.Google Scholar
  23. 23.
    R. E. Vandenberghe, A. E. Verbeeck, E. De Grave et al. Hyperfine Interact., 1986, 29, 1157.CrossRefGoogle Scholar
  24. 24.
    C. A. McCammon, A. I. Becerro, F. Langenhorst et al. J. Phys.: Condens. Matter, 2000, 12, 2969.Google Scholar
  25. 25.
    J. C. Waerenborgh, D. P. Rojas, A. L. Shaula et al. Mater. Lett., 2004, 58, 3432.CrossRefGoogle Scholar
  26. 26.
    D. Hirabayashi, Y. Sakai, T. Yoshikawa et al. Hyperfine Interact., 2006, 167, 809.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. V. Knyazev
    • 1
    Email author
  • N. N. Shishkina
    • 2
  • O. A. Bayukov
    • 1
  • N. P. Kirik
    • 2
  • L. A. Solovyov
    • 2
  • A. M. Zhizhaev
    • 2
  • E. V. Rabchevsky
    • 2
  • A. G. Anshits
    • 2
  1. 1.Kirensky Institute of Physics, Federal Krasnoyarsk Research Center, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Institute of Chemistry and Chemical Technology, Federal Krasnoyarsk Research Center, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia

Personalised recommendations