Investigation of Lithium-Ion Diffusion in LiCoPO4 Cathode Material by Molecular Dynamics Simulation

Abstract

One of the common cathode materials in the lithium ion battery is the olivine structure LiMPO4, where M is one of Co, Mn, Ni, Fe elements or their combination. Due to its high energy density LiCoPO4 is considered as a cathode material in the lithium ion battery. Lithium ion diffusion at the atomic scale is very important for determining the electrode charge/discharge rate-capability. A molecular dynamics simulation method can be used to investigate the lithium ion diffusion in a material from the atomic point of view. In this study, the diffusevity and structural properties of the LiCoPO4 cathode material are investigated by evaluating the mean square displacement curves, radial distribution function plots, and z-density profiles obtained using the molecular dynamics simulation implemented in the DL-POLY software. The results 10−12 m2/s to 10−13 m2/s at different show that the diffusion coefficient of crystalline LiCoPO4 ranges from 10−2 m2/s to 10−2 m/s at different temperatures. By comparing the diffusion coefficient in different directions, it is found that the motion of lithium ions along the [010] channel is significantly more convenient than that along [100] and [001] channels. By substituting other metals, such as iron, nickel and manganese, for cobalt, the transport and structural properties of the resulting material are investigated. The results indicate that the cobalt-containing structure has a more capability for fast charging and discharging.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. B. Goodenough and K.-S. Park. J. Am. Chem. Soc., 2013, 135(4), 1167.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    B. Xu, D. Qian, Z. Wang, and Y. S. Meng. Mater. Sci. Eng.: R: Rep., 2012, 73(5–6), 51.

    CAS  Google Scholar 

  3. 3.

    H. Li, Y. Wang, X. Yang, L. Liu, L. Chen, and J. Wei. Solid State Ionics, 2014, 255, 84.

    Article  CAS  Google Scholar 

  4. 4.

    Y. Maeyoshi, S. Miyamoto, H. Munakata, and K. Kanamura. J. Power Sources, 2018, 376, 18.

    Article  CAS  Google Scholar 

  5. 5.

    N. Kosova, A. Slobodyuk, and O. Podgornova. J. Struct. Chem., 2016, 57(2), 345.

    Article  CAS  Google Scholar 

  6. 6.

    L. Croguennec and M. R. Palacin. J. Am. Chem. Soc., 2015, 137

  7. 7.

    M. S. Kishore and U. Varadaraju. Mater. Res. Bull., 2005, 40(10), 1705.

    Article  CAS  Google Scholar 

  8. 8.

    J. Wolfenstine, J. Read, and J. Allen. J. Power Sources, 2007, 163(2), 1070.

    Article  CAS  Google Scholar 

  9. 9.

    H. Li, J. Jin, J. Wei, Z. Zhou, and J. Yan. Electrochem. Commun., 2009, 11(1), 95.

    Article  CAS  Google Scholar 

  10. 10.

    R. Sharabi, E. Markevich, K. Fridman, G. Gershinsky, G. Salitra, D. Aurbach, G. Semrau, M. Schmidt, N. Schall, and C. Bruenig. Electrochem. Commun., 2013, 28, 20.

    Article  CAS  Google Scholar 

  11. 11.

    S. Shang, Y. Wang, Z. Mei, X. Hui, and Z. Liu. J. Mater. Chem., 2012, 22(3), 1142.

    Article  CAS  Google Scholar 

  12. 12.

    J. Osorio-Guillen, B. Holm, R. Ahuja, and B. Johansson. Solid State Ionics, 2004, 167(3–4), 221.

    Article  CAS  Google Scholar 

  13. 13.

    P. Zhang, Y. Wu, D. Zhang, Q. Xu, J. Liu, X. Ren, Z. Luo, M. Wang, and W. Hong. J. Phys. Chem. A, 2008, 112(24), 5406.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    S. Adams. J. Solid State Electrochem., 2010, 14(10), 1787.

    Article  CAS  Google Scholar 

  15. 15.

    J. Ludwig, C. Marino, D. Haering, C. Stinner, D. Nordlund, M. M. Doeff, H. A. Gasteiger, and T. Nilges. RSC Adv., 2016, 6(86), 82984.

    Article  CAS  Google Scholar 

  16. 16.

    I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove. J. Mater. Chem., 2006, 16(20), 1911.

    Article  CAS  Google Scholar 

  17. 17.

    M. S. Islam, D. J. Driscoll, C. A. Fisher, and P. R. Slater. Chem. Mater., 2005, 17(20), 5085.

    Article  CAS  Google Scholar 

  18. 18.

    C. A. Fisher, V. M. Hart Prieto, and M. S. Islam. Chem. Mater., 2008, 20(18), 5907.

    Article  CAS  Google Scholar 

  19. 19.

    D. Frenkel, B. Smit. Understanding Molecular Simulation: From Algorithms to Applications. Elsevier, 2001.

  20. 20.

    A. Eftekhari. J. Electrochem. Soc., 2004, 151(9), A1456.

    Article  CAS  Google Scholar 

  21. 21.

    C.-C. Su, M. He, P. C. Redfern, L. A. Curtiss, I. A. Shkrob, and Z. Zhang. Energy Environ. Sci., 2017, 10(4), 900.

    Article  CAS  Google Scholar 

  22. 22.

    G. Chen, X. Song, and T. J. Richardson. Electrochem. Solid-State Lett., 2006, 9(6), A295.

    Article  CAS  Google Scholar 

  23. 23.

    Y. Hou, K. Chang, B. Li, H. Tang, Z. Wang, J. Zou, H. Yuan, Z. Lu, and Z. Chang. Nano Res., 2018, 11(5), 2424.

    Article  CAS  Google Scholar 

  24. 24.

    S. Theil, M. Fleischhammer, P. Axmann, and M. Wohlfahrt-Mehrens. J. Power Sources, 2013, 222, 72.

    Article  CAS  Google Scholar 

  25. 25.

    W. Smith, T. Forester, and I. Todorov. STFC, STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, United Kingdom, version. 2012, 1.

    Google Scholar 

  26. 26.

    A. Mauger, C. Julien, M. Armand, J. Goodenough, and K. Zaghib. Curr. Opin. Electrochem., 2017, 6(1), 63.

    Article  CAS  Google Scholar 

  27. 27.

    M. Higuchi, K. Katayama, Y. Azuma, M. Yukawa, and M. Suhara. J. Power Sources, 2003, 119, 258.

    Article  CAS  Google Scholar 

  28. 28.

    G. Li, H. Azuma, and M. Tohda. Electrochem. Solid-State Lett., 2002, 5(6), A135.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Mohammadi-Manesh.

Additional information

Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 5, pp. 761-769.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dehghan, F., Mohammadi-Manesh, H. & Loghavi, M.M. Investigation of Lithium-Ion Diffusion in LiCoPO4 Cathode Material by Molecular Dynamics Simulation. J Struct Chem 60, 727–735 (2019). https://doi.org/10.1134/S0022476619050044

Download citation

Keywords

  • molecular dynamics simulation
  • lithium-ion
  • battery
  • diffusion
  • LiCoPO4
  • radial distribution function