Journal of Structural Chemistry

, Volume 60, Issue 5, pp 727–735 | Cite as

Investigation of Lithium-Ion Diffusion in LiCoPO4 Cathode Material by Molecular Dynamics Simulation

  • F. Dehghan
  • H. Mohammadi-ManeshEmail author
  • M. M. Loghavi


One of the common cathode materials in the lithium ion battery is the olivine structure LiMPO4, where M is one of Co, Mn, Ni, Fe elements or their combination. Due to its high energy density LiCoPO4 is considered as a cathode material in the lithium ion battery. Lithium ion diffusion at the atomic scale is very important for determining the electrode charge/discharge rate-capability. A molecular dynamics simulation method can be used to investigate the lithium ion diffusion in a material from the atomic point of view. In this study, the diffusevity and structural properties of the LiCoPO4 cathode material are investigated by evaluating the mean square displacement curves, radial distribution function plots, and z-density profiles obtained using the molecular dynamics simulation implemented in the DL-POLY software. The results 10−12 m2/s to 10−13 m2/s at different show that the diffusion coefficient of crystalline LiCoPO4 ranges from 10−2 m2/s to 10−2 m/s at different temperatures. By comparing the diffusion coefficient in different directions, it is found that the motion of lithium ions along the [010] channel is significantly more convenient than that along [100] and [001] channels. By substituting other metals, such as iron, nickel and manganese, for cobalt, the transport and structural properties of the resulting material are investigated. The results indicate that the cobalt-containing structure has a more capability for fast charging and discharging.


molecular dynamics simulation lithium-ion battery diffusion LiCoPO4 radial distribution function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. B. Goodenough and K.-S. Park. J. Am. Chem. Soc., 2013, 135(4), 1167.CrossRefGoogle Scholar
  2. 2.
    B. Xu, D. Qian, Z. Wang, and Y. S. Meng. Mater. Sci. Eng.: R: Rep., 2012, 73(5–6), 51.Google Scholar
  3. 3.
    H. Li, Y. Wang, X. Yang, L. Liu, L. Chen, and J. Wei. Solid State Ionics, 2014, 255, 84.CrossRefGoogle Scholar
  4. 4.
    Y. Maeyoshi, S. Miyamoto, H. Munakata, and K. Kanamura. J. Power Sources, 2018, 376, 18.CrossRefGoogle Scholar
  5. 5.
    N. Kosova, A. Slobodyuk, and O. Podgornova. J. Struct. Chem., 2016, 57(2), 345.CrossRefGoogle Scholar
  6. 6.
    L. Croguennec and M. R. Palacin. J. Am. Chem. Soc., 2015, 137 Google Scholar
  7. 7.
    M. S. Kishore and U. Varadaraju. Mater. Res. Bull., 2005, 40(10), 1705.CrossRefGoogle Scholar
  8. 8.
    J. Wolfenstine, J. Read, and J. Allen. J. Power Sources, 2007, 163(2), 1070.CrossRefGoogle Scholar
  9. 9.
    H. Li, J. Jin, J. Wei, Z. Zhou, and J. Yan. Electrochem. Commun., 2009, 11(1), 95.CrossRefGoogle Scholar
  10. 10.
    R. Sharabi, E. Markevich, K. Fridman, G. Gershinsky, G. Salitra, D. Aurbach, G. Semrau, M. Schmidt, N. Schall, and C. Bruenig. Electrochem. Commun., 2013, 28, 20.CrossRefGoogle Scholar
  11. 11.
    S. Shang, Y. Wang, Z. Mei, X. Hui, and Z. Liu. J. Mater. Chem., 2012, 22(3), 1142.CrossRefGoogle Scholar
  12. 12.
    J. Osorio-Guillen, B. Holm, R. Ahuja, and B. Johansson. Solid State Ionics, 2004, 167(3–4), 221.CrossRefGoogle Scholar
  13. 13.
    P. Zhang, Y. Wu, D. Zhang, Q. Xu, J. Liu, X. Ren, Z. Luo, M. Wang, and W. Hong. J. Phys. Chem. A, 2008, 112(24), 5406.CrossRefGoogle Scholar
  14. 14.
    S. Adams. J. Solid State Electrochem., 2010, 14(10), 1787.CrossRefGoogle Scholar
  15. 15.
    J. Ludwig, C. Marino, D. Haering, C. Stinner, D. Nordlund, M. M. Doeff, H. A. Gasteiger, and T. Nilges. RSC Adv., 2016, 6(86), 82984.CrossRefGoogle Scholar
  16. 16.
    I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove. J. Mater. Chem., 2006, 16(20), 1911.CrossRefGoogle Scholar
  17. 17.
    M. S. Islam, D. J. Driscoll, C. A. Fisher, and P. R. Slater. Chem. Mater., 2005, 17(20), 5085.CrossRefGoogle Scholar
  18. 18.
    C. A. Fisher, V. M. Hart Prieto, and M. S. Islam. Chem. Mater., 2008, 20(18), 5907.CrossRefGoogle Scholar
  19. 19.
    D. Frenkel, B. Smit. Understanding Molecular Simulation: From Algorithms to Applications. Elsevier, 2001.Google Scholar
  20. 20.
    A. Eftekhari. J. Electrochem. Soc., 2004, 151(9), A1456.CrossRefGoogle Scholar
  21. 21.
    C.-C. Su, M. He, P. C. Redfern, L. A. Curtiss, I. A. Shkrob, and Z. Zhang. Energy Environ. Sci., 2017, 10(4), 900.CrossRefGoogle Scholar
  22. 22.
    G. Chen, X. Song, and T. J. Richardson. Electrochem. Solid-State Lett., 2006, 9(6), A295.CrossRefGoogle Scholar
  23. 23.
    Y. Hou, K. Chang, B. Li, H. Tang, Z. Wang, J. Zou, H. Yuan, Z. Lu, and Z. Chang. Nano Res., 2018, 11(5), 2424.CrossRefGoogle Scholar
  24. 24.
    S. Theil, M. Fleischhammer, P. Axmann, and M. Wohlfahrt-Mehrens. J. Power Sources, 2013, 222, 72.CrossRefGoogle Scholar
  25. 25.
    W. Smith, T. Forester, and I. Todorov. STFC, STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, United Kingdom, version. 2012, 1.Google Scholar
  26. 26.
    A. Mauger, C. Julien, M. Armand, J. Goodenough, and K. Zaghib. Curr. Opin. Electrochem., 2017, 6(1), 63.CrossRefGoogle Scholar
  27. 27.
    M. Higuchi, K. Katayama, Y. Azuma, M. Yukawa, and M. Suhara. J. Power Sources, 2003, 119, 258.CrossRefGoogle Scholar
  28. 28.
    G. Li, H. Azuma, and M. Tohda. Electrochem. Solid-State Lett., 2002, 5(6), A135.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • F. Dehghan
    • 1
  • H. Mohammadi-Manesh
    • 1
    Email author
  • M. M. Loghavi
    • 1
    • 2
  1. 1.Department of Chemistry, Faculty of SciencesYazd UniversityYazdIran
  2. 2.Institute of MechanicsIranian Space Research CenterShirazIran

Personalised recommendations