Skip to main content
Log in

Structure and Properties of the Molecular Complex of Antimony(III) Fluoride with γ-Glycine

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A binuclear complex of composition 2SbF3·(C2H5NO2) (I) of antimony(III) with the γ-glycine amino acid is prepared. The antimony atoms in this complex are connected to each other by the amino acid ligand. The crystal structure of this complex is determined to be monoclinic, a = 11.5155(3) \(\acute{\overset{\circ}{\mathrm{A}}}\), b = 12.3905(3) \(\acute{\overset{\circ}{\mathrm{A}}}\), c = 8.0906(2) \(\acute{\overset{\circ}{\mathrm{A}}}\), β = 134.261(1)°, Z = 4, space group Cc, which is a novel structural type of antimony(III) fluoride complex compound. The structure is formed by molecular groups SbF3(C2H5NO2)SbF3 connected by secondary bonds into polymeric ribbons parallel to the plane (bc). The ribbons are connected by longer bonds Sb…F (2.674-3.177 \(\acute{\overset{\circ}{\mathrm{A}}}\)) and hydrogen bonds N-H⋯F and C-H⋯F into a three-dimensional framework. Vibrational spectra of I are studied in comparison with those of crystalline γ-glycine. The biological activity of the compound of the antimony(III) fluoride complex with the amino acid is studied in vitro against the following type strains of test cultures: gram-negative bacteria (E. coli, P. aeruginosa), gram-positive bacteria (S. aureus, B. subtilis), and fungi (C. albicans).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Lemanov. Adv. Solid State Phys., 2012, 54, 1726.

    Google Scholar 

  2. S. Nuraeva, D. S. Vasileva, S. G. Vasilev et al. Ferroelectrics, 2016, 496, 1.

    Article  CAS  Google Scholar 

  3. R. R. Choudhury, R. Chitra, N. Aliouane et al. Acta Crystallogr., Sect. B: Struct. Sci., 2013, 69, 595.

    Article  CAS  Google Scholar 

  4. K. Senthilkumar, S. Moorthy Babu, and Binay Kumar. Proc. Indian Natl. Sci. Acad., 2013, 79, 423.

    CAS  Google Scholar 

  5. T. Aiyelabola, I. Ojo, A. Adebajo et al. Adv. Biol. Chem., 2012, 2, 268.

    Article  CAS  Google Scholar 

  6. P. Baiocco, G. Colotti, S. Franceschini et al. J. Med. Chem., 2009, 52, 2603.

    Article  CAS  PubMed  Google Scholar 

  7. Edward P. T. Tiekink. “Anticancer Activity of Molecular Compounds of Arsenic, Antimony and Bismuth” / N. Yang, H. Sun. Biol. Chem. Arsenic, Antimony Bismuth. John Willey & Sons, Ltd, 2011, 293–310.

  8. R. L. Davidovich, V. B. Logvinova, L. A. Zemnukhova et al. Russ. J. Coord. Chem., 1991, 17, 1342.

    CAS  Google Scholar 

  9. A. A. Udovenko, L. A. Zemnukhova, E. V. Kovaleva, and R. L. Davidovich. Russ. J. Coord. Chem., 2005, 31, 225.

    Article  CAS  Google Scholar 

  10. L. A. Zemnukhova, R. L. Davidovich, A. A. Udovenko, and E. V. Kovaleva. Russ. J. Coord. Chem., 2005, 31, 115.

    CAS  Google Scholar 

  11. A. A. Udovenko, N. V. Makarenko, E. V. Kovaleva, and L. A. Zemnukhova. J. Struct. Chem., 2018, 59, 1

    Article  Google Scholar 

  12. A. A. Udovenko, N. V. Makarenko, R. L. Davidovich, L. A. Zemnukhova, and E. V. Kovaleva. J. Struct. Chem., 2010, 51, 765.

    Article  CAS  Google Scholar 

  13. A. A. Udovenko, N. V. Makarenko, R. L. Davidovich, L. A. Zemnukhova, and E. V. Kovaleva. J. Struct. Chem., 2010, 51, 904.

    Article  CAS  Google Scholar 

  14. A. A. Udovenko, N. V. Makarenko, R. L. Davidovich, L. A. Zemnukhova, and E. V. Kovaleva. J. Struct. Chem., 2011, 52, 616.

    Article  CAS  Google Scholar 

  15. A. A. Udovenko, R. L. Davidovich, L. A. Zemnukhova, E. V. Kovaleva, and N. V. Makarenko. J. Struct. Chem., 2010, 51, 540.

    Article  CAS  Google Scholar 

  16. A. A. Udovenko, R. L. Davidovich, L. A. Zemnukhova, E. V. Kovaleva, and N. V. Makarenko. J. Struct. Chem. 2018, 59, 1474.

    Google Scholar 

  17. V. Y. Kavun, N. A. Didenko, N. V. Makarenko, A. B. Slobodyuk et al. Russ. J. Inorg. Chem., 2012, 57, 1262.

    Article  CAS  Google Scholar 

  18. N. V. Makarenko, V. Ya. Kavun, A. A. Udovenko et al. J. Fluorine Chem., 2018, 213, 56.

    Article  CAS  Google Scholar 

  19. L. A. Zemnukhova and R. L. Davidovich. Z. Naturforsch., 1998, 53a, 573–584.

    Google Scholar 

  20. V. Y Kavun, A. A. Udovenko, N. F. Uvarov et al. Russ. J. Inorg. Chem., 2003, 48, 874.

    Google Scholar 

  21. E. V. Kovaleva, L. A. Zemnukhova, V. M. Nikitin et al. Russ. J. Appl. Chem., 2002, 75, 954.

    Article  CAS  Google Scholar 

  22. L. A. Zemnukhova, E. V. Kovaleva, V. A. Mamontova, and G. A. Fedorishcheva. The patent of the Russian Federation No 2298407. Bull. 13, 2007.

  23. C. Azoro. World J. Biotechnol., 2002, 3, 347–357.

    Google Scholar 

  24. Bruker. APEX2, Bruker AXS Inc., Madison, Wisconsin, USA, 2012.

    Google Scholar 

  25. G. M. Sheldrick. Acta Crystallogr., 2015, A71, 3.

    Google Scholar 

  26. A. A. Udovenko and L. M. Volkova. Russ. J. Coord. Chem., 1981, 7, 1763.

    CAS  Google Scholar 

  27. R. Gillespie and I. Hargittai. The VSERP Model of Molecular Geometry. Allyn and Bacon: Boston, 1991.

    Google Scholar 

  28. Ch. Destrade, Ch. Garrigou-Lagrange, and M-Th. Forel. J. Mol. Struct., 1971, 10, 203–219.

    Article  CAS  Google Scholar 

  29. J. Baran and H. Ratajczak. Spectrochim. Acta, Part A, 2005, 61, 1611–1626.

    Article  CAS  Google Scholar 

  30. G. B. Chernobai, Y. A. Chesalov, and E. B. Burgina. J. Struct. Chem., 2007, 48, 332.

    Article  CAS  Google Scholar 

  31. M. Kakihana, M. Akiyama, T. Nagumo et al. Z. Naturforsch., 1988, 43a, 774–792.

    Article  Google Scholar 

  32. J. Alper, H. Dothe, and M. A. Lowe. Chem. Phys., 1992, 161, 199–209.

    Article  CAS  Google Scholar 

  33. K. Machida, A. Kagayama, and Y. Yaito. J. Raman Spectrosc., 1979, 8, 133–138.

    Article  CAS  Google Scholar 

  34. M. T. Rosado, M. Leonor, T. S. Duarte et al. Vib. Spectrosc., 1998, 16, 35–54.

    Article  CAS  Google Scholar 

  35. G. R. Dillip, P. Raghavaiah, K. Mallikarjuna et al. Spectrochim. Acta, Part A, 2011, 79, 1123–1127.

    Article  CAS  Google Scholar 

  36. D. Chakraborty and S. Manogaran. Chem. Phys. Lett., 1998, 294, 56–64.

    Article  CAS  Google Scholar 

  37. J. Edwards. J. Chem. SOC. (A), 1970. 2751–2753.

  38. L. E. Alexander and I. R. Beattie. J. Chem. Soc., Dalton Trans., 1972, 1745–1750.

  39. C. J. Adams and A. J. Downs. J. Chem. SOC. (A), 1971, 1534–1542.

  40. Yu. Ya. Kharitonov, R. L. Davidovich, V. I. Kostin et al. Russ. J. Inorg. Chem., 1972, 17, 1316.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Makarenko.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 4, pp. 656–665.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voit, E.I., Udovenko, A.A., Kovaleva, E.V. et al. Structure and Properties of the Molecular Complex of Antimony(III) Fluoride with γ-Glycine. J Struct Chem 60, 630–639 (2019). https://doi.org/10.1134/S0022476619040140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619040140

Keywords

Navigation