Abstract
A binuclear complex of composition 2SbF3·(C2H5NO2) (I) of antimony(III) with the γ-glycine amino acid is prepared. The antimony atoms in this complex are connected to each other by the amino acid ligand. The crystal structure of this complex is determined to be monoclinic, a = 11.5155(3) \(\acute{\overset{\circ}{\mathrm{A}}}\), b = 12.3905(3) \(\acute{\overset{\circ}{\mathrm{A}}}\), c = 8.0906(2) \(\acute{\overset{\circ}{\mathrm{A}}}\), β = 134.261(1)°, Z = 4, space group Cc, which is a novel structural type of antimony(III) fluoride complex compound. The structure is formed by molecular groups SbF3(C2H5NO2)SbF3 connected by secondary bonds into polymeric ribbons parallel to the plane (bc). The ribbons are connected by longer bonds Sb…F (2.674-3.177 \(\acute{\overset{\circ}{\mathrm{A}}}\)) and hydrogen bonds N-H⋯F and C-H⋯F into a three-dimensional framework. Vibrational spectra of I are studied in comparison with those of crystalline γ-glycine. The biological activity of the compound of the antimony(III) fluoride complex with the amino acid is studied in vitro against the following type strains of test cultures: gram-negative bacteria (E. coli, P. aeruginosa), gram-positive bacteria (S. aureus, B. subtilis), and fungi (C. albicans).
Similar content being viewed by others
References
V. V. Lemanov. Adv. Solid State Phys., 2012, 54, 1726.
S. Nuraeva, D. S. Vasileva, S. G. Vasilev et al. Ferroelectrics, 2016, 496, 1.
R. R. Choudhury, R. Chitra, N. Aliouane et al. Acta Crystallogr., Sect. B: Struct. Sci., 2013, 69, 595.
K. Senthilkumar, S. Moorthy Babu, and Binay Kumar. Proc. Indian Natl. Sci. Acad., 2013, 79, 423.
T. Aiyelabola, I. Ojo, A. Adebajo et al. Adv. Biol. Chem., 2012, 2, 268.
P. Baiocco, G. Colotti, S. Franceschini et al. J. Med. Chem., 2009, 52, 2603.
Edward P. T. Tiekink. “Anticancer Activity of Molecular Compounds of Arsenic, Antimony and Bismuth” / N. Yang, H. Sun. Biol. Chem. Arsenic, Antimony Bismuth. John Willey & Sons, Ltd, 2011, 293–310.
R. L. Davidovich, V. B. Logvinova, L. A. Zemnukhova et al. Russ. J. Coord. Chem., 1991, 17, 1342.
A. A. Udovenko, L. A. Zemnukhova, E. V. Kovaleva, and R. L. Davidovich. Russ. J. Coord. Chem., 2005, 31, 225.
L. A. Zemnukhova, R. L. Davidovich, A. A. Udovenko, and E. V. Kovaleva. Russ. J. Coord. Chem., 2005, 31, 115.
A. A. Udovenko, N. V. Makarenko, E. V. Kovaleva, and L. A. Zemnukhova. J. Struct. Chem., 2018, 59, 1
A. A. Udovenko, N. V. Makarenko, R. L. Davidovich, L. A. Zemnukhova, and E. V. Kovaleva. J. Struct. Chem., 2010, 51, 765.
A. A. Udovenko, N. V. Makarenko, R. L. Davidovich, L. A. Zemnukhova, and E. V. Kovaleva. J. Struct. Chem., 2010, 51, 904.
A. A. Udovenko, N. V. Makarenko, R. L. Davidovich, L. A. Zemnukhova, and E. V. Kovaleva. J. Struct. Chem., 2011, 52, 616.
A. A. Udovenko, R. L. Davidovich, L. A. Zemnukhova, E. V. Kovaleva, and N. V. Makarenko. J. Struct. Chem., 2010, 51, 540.
A. A. Udovenko, R. L. Davidovich, L. A. Zemnukhova, E. V. Kovaleva, and N. V. Makarenko. J. Struct. Chem. 2018, 59, 1474.
V. Y. Kavun, N. A. Didenko, N. V. Makarenko, A. B. Slobodyuk et al. Russ. J. Inorg. Chem., 2012, 57, 1262.
N. V. Makarenko, V. Ya. Kavun, A. A. Udovenko et al. J. Fluorine Chem., 2018, 213, 56.
L. A. Zemnukhova and R. L. Davidovich. Z. Naturforsch., 1998, 53a, 573–584.
V. Y Kavun, A. A. Udovenko, N. F. Uvarov et al. Russ. J. Inorg. Chem., 2003, 48, 874.
E. V. Kovaleva, L. A. Zemnukhova, V. M. Nikitin et al. Russ. J. Appl. Chem., 2002, 75, 954.
L. A. Zemnukhova, E. V. Kovaleva, V. A. Mamontova, and G. A. Fedorishcheva. The patent of the Russian Federation No 2298407. Bull. 13, 2007.
C. Azoro. World J. Biotechnol., 2002, 3, 347–357.
Bruker. APEX2, Bruker AXS Inc., Madison, Wisconsin, USA, 2012.
G. M. Sheldrick. Acta Crystallogr., 2015, A71, 3.
A. A. Udovenko and L. M. Volkova. Russ. J. Coord. Chem., 1981, 7, 1763.
R. Gillespie and I. Hargittai. The VSERP Model of Molecular Geometry. Allyn and Bacon: Boston, 1991.
Ch. Destrade, Ch. Garrigou-Lagrange, and M-Th. Forel. J. Mol. Struct., 1971, 10, 203–219.
J. Baran and H. Ratajczak. Spectrochim. Acta, Part A, 2005, 61, 1611–1626.
G. B. Chernobai, Y. A. Chesalov, and E. B. Burgina. J. Struct. Chem., 2007, 48, 332.
M. Kakihana, M. Akiyama, T. Nagumo et al. Z. Naturforsch., 1988, 43a, 774–792.
J. Alper, H. Dothe, and M. A. Lowe. Chem. Phys., 1992, 161, 199–209.
K. Machida, A. Kagayama, and Y. Yaito. J. Raman Spectrosc., 1979, 8, 133–138.
M. T. Rosado, M. Leonor, T. S. Duarte et al. Vib. Spectrosc., 1998, 16, 35–54.
G. R. Dillip, P. Raghavaiah, K. Mallikarjuna et al. Spectrochim. Acta, Part A, 2011, 79, 1123–1127.
D. Chakraborty and S. Manogaran. Chem. Phys. Lett., 1998, 294, 56–64.
J. Edwards. J. Chem. SOC. (A), 1970. 2751–2753.
L. E. Alexander and I. R. Beattie. J. Chem. Soc., Dalton Trans., 1972, 1745–1750.
C. J. Adams and A. J. Downs. J. Chem. SOC. (A), 1971, 1534–1542.
Yu. Ya. Kharitonov, R. L. Davidovich, V. I. Kostin et al. Russ. J. Inorg. Chem., 1972, 17, 1316.
Author information
Authors and Affiliations
Corresponding author
Additional information
Russian Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 4, pp. 656–665.
Rights and permissions
About this article
Cite this article
Voit, E.I., Udovenko, A.A., Kovaleva, E.V. et al. Structure and Properties of the Molecular Complex of Antimony(III) Fluoride with γ-Glycine. J Struct Chem 60, 630–639 (2019). https://doi.org/10.1134/S0022476619040140
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0022476619040140