Advertisement

Journal of Structural Chemistry

, Volume 60, Issue 1, pp 53–58 | Cite as

On the Influence of the Nature of Non-Bridging Donor Atoms on the Structure and Magnetic Properties of Binuclear Cu(II) Complexes with Heterocyclic Azomethine Ligands

  • I. N. Shcherbakov
  • S. I. LevchenkovEmail author
  • L. D. Popov
  • Yu. P. Tupolova
  • A. N. Morozov
  • E. A. Raspopova
  • S. N. Lyubchenko
Article
  • 11 Downloads

Abstract

Binuclear complex [Cu2L(μ2-pz)] (pz = pyrazolate anion) of copper(II) with the condensation product of 1,3-diamino-2-propanol (DAP) and 4-formyl-3-formylcoumarin (H3L) is synthesized and characterized. Magnetic properties of the complex are compared with those demonstrated by a number of previously studied compounds based on bis-azomethine derivatives of DAP with the structure similar to that of studied compounds, i.e. identical exchange fragments and immediate donor environments of copper(II) ions. Antiferromagnetic exchange parameters of these complexes are calculated within the DFT method using the “broken-symmetry” approximation. It is shown for the complexes with the same structure of the exchange fragment and the nearest donor environment of metal centers that the significant variation of the exchange parameter (∼100 cm−1) is determined by the electronic nature of non-bridging donor oxygen atoms of the carbonyl fragment of the bis-azomethine ligand.

Keywords

azomethines coordination compounds magnetochemistry exchange interaction density functional theory broken symmetry approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Kogan, V. V. Lukov, and I. N. Shcherbakov. Russ. J. Coord. Chem., 2010, 36(36), 401.CrossRefGoogle Scholar
  2. 2.
    I. Negodaev, C. De Graaf, R. Caballol, and V. V. Lukov. Inorg. Chim. Acta, 2011, 375(375), 166.CrossRefGoogle Scholar
  3. 3.
    A. G. Starikov, V. A. Kogan, V. V. Lukov, et al. Russ. J. Coord. Chem., 2009, 35(35), 616.CrossRefGoogle Scholar
  4. 4.
    S. I. Levchenkov, I. N. Shcherbakov, L. D. Popov, et al. Russ. J. Coord. Chem., 2014, 40(40), 523.CrossRefGoogle Scholar
  5. 5.
    V. V. Lukov, V. A. Kogan, V. M. Novotortsev, et al. Russ. J. Coord. Chem., 2005, 31(31), 353.CrossRefGoogle Scholar
  6. 6.
    E. Ruiz, P. Alemany, S. Alvarez, and J. Cano. J. Am. Chem. Soc., 1997, 119(119), 1297.CrossRefGoogle Scholar
  7. 7.
    V. V. Lukov, S. I. Levchenkov, I. N. Shcherbakov, and V. A. Kogan. Russ. J. Coord. Chem., 1997, 23(23), 507.Google Scholar
  8. 8.
    V. V. Lukov, S. I. Levchenkov, S. V. Posokhova, et al. Russ. J. Coord. Chem., 2002, 28(28), 222.CrossRefGoogle Scholar
  9. 9.
    S. I. Levchenkov, V. V. Lukov, V. A. Kogan, et al. Russ. J. Iorg. Chem., 1997, 42(42), 996.Google Scholar
  10. 10.
    S. I. Levchenkov, I. N. Shcherbakov, L. D. Popov, et al. J. Struct. Chem., 2015, 56(56), 113.CrossRefGoogle Scholar
  11. 11.
    I. N. Shcherbakov, S. I. Levchenkov, L. D. Popov, et al. Russ. J. Coord. Chem., 2015, 41(41), 69.CrossRefGoogle Scholar
  12. 12.
    B. Bleaney and K. D. Bowers. Proc. R. Soc. London, Ser. A, 1952, 214(1119), 451.CrossRefGoogle Scholar
  13. 13.
    A. D. Becke. J. Chem. Phys., 1993, 98(98), 5648.CrossRefGoogle Scholar
  14. 14.
    A. D. Becke. Phys. Rev. A, 1988, 38(38), 3098.CrossRefGoogle Scholar
  15. 15.
    C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37(37), 785–789.CrossRefGoogle Scholar
  16. 16.
    S. I. Levchenkov, I. N. Shcherbakov, L. D. Popov, et al. Inorg. Chim. Acta, 2013, 405, 169.CrossRefGoogle Scholar
  17. 17.
    L. D. Popov, I. N. Shcherbakov, S. I. Levchenkov, et al. J. Coord. Chem., 2008, 61(61), 392–409.CrossRefGoogle Scholar
  18. 18.
    I. N. Shcherbakov, S. I. Levchenkov, Y. P. Tupolova, et al. Eur. J. Inorg. Chem., 2013, 2013(2013), 5033.Google Scholar
  19. 19.
    A. P. Ginsberg. J. Am. Chem. Soc., 1980, 102(102), 111.CrossRefGoogle Scholar
  20. 20.
    E. Ruiz, J. Cano, S. Alvarez, and P. Alemany. J. Comput. Chem., 1999, 20(20), 1391.CrossRefGoogle Scholar
  21. 21.
    L. Noodleman, C. Y. Peng, D. A. Case, and J. M. Mouesca. Coord. Chem. Rev., 1995, 144, 199.CrossRefGoogle Scholar
  22. 22.
    I. Ciofini and C. A. Daul. Coord. Chem. Rev., 2003, 238–239, 187.CrossRefGoogle Scholar
  23. 23.
    J. P. Malrieu, R. Caballol, C. J. Calzado, et al. Chem. Rev., 2013, 114(114), 429.Google Scholar
  24. 24.
    N. Onofrio and J.-M. Mouesca. J. Phys. Chem. A, 2010, 114(20), 6149.CrossRefGoogle Scholar
  25. 25.
    T. Soda, Y. Kitagawa, T. Onishi, et al. Chem. Phys. Lett., 2000, 319(3/4), 223.CrossRefGoogle Scholar
  26. 26.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 03, Revision D.01. Gaussian, Inc., Wallingford CT, 2004.Google Scholar
  27. 27.
    S. I. Levchenkov, I. N. Shcherbakov, L. D. Popov, et al. Russ. Chem. Bull., 2014, 63(63), 673.CrossRefGoogle Scholar
  28. 28.
    L. D. Popov, S. I. Levchenkov, I. N. Shcherbakov, et al. Inorg. Chem. Commun., 2012, 17, 1.CrossRefGoogle Scholar
  29. 29.
    Y. P. Tupolova, V. A. Kogan, V. V. Lukov, et al. Transit. Met. Chem., 2007, 32(32), 656.CrossRefGoogle Scholar
  30. 30.
    Y. Nishida and S. Kida. J. Chem. Soc., Dalton Trans., 1986, (12), 2633.Google Scholar
  31. 31.
    Y. Nishida and S. Kida. Inorg. Chem., 1988, 27(27), 447.CrossRefGoogle Scholar
  32. 32.
    I. N. Shcherbakov. Interaction of Polydentate Ligands in Transition Metal Complexes [in Russian]. Doctoral Thesis in Chemistry, Rostov-on-Don, Southern Federal University, 2014.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. N. Shcherbakov
    • 1
  • S. I. Levchenkov
    • 1
    • 2
    Email author
  • L. D. Popov
    • 1
  • Yu. P. Tupolova
    • 1
  • A. N. Morozov
    • 1
  • E. A. Raspopova
    • 1
  • S. N. Lyubchenko
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia

Personalised recommendations