Journal of Structural Chemistry

, Volume 59, Issue 8, pp 1935–1943 | Cite as

Synthesis Characterization, Crystal Structure, and Fluorescence of a New Samarium Schiff Base Complex

  • A. A. Abu-Yamin
  • M. A. AlDamenEmail author
  • M. O. Sinnokrot
  • H. K. Juwhari
  • M. Salman
  • I. Sarairah
  • J. Al-Hawarin
  • M. S. Mubarak


A new samarium Schiff base complex with the formula [SmIII(NO3)3(H2O)L2].EtOH, where L = {(E)-2- (((4-(ethoxycarbonyl)phenyl)iminio)-methyl)phenolate}, is synthesized. Its molecular structure is determined by means of single crystal X-ray diffraction (XRD). The complex crystallizes in the orthorhombic space group Pbca with the following unit cell dimensions: a = 14.1304(19) Å, b = 18.0218(13) Å, and c = 31.246(2) Å. Photoluminescence characteristics of the complex are investigated experimentally in the solid state and obtained theoretically using the Sparkle/PM7 modeling. Moreover, several methods such as powder XRD, FT-IR and UV-Visible spectroscopy are utilized to confirm the structure of the complex.


samarium Schiff base fluorescence crystal structure Sparkle/PM7 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. M. Da Silva, D. L. da Silva, L. V. Modolo, R. B. Alves, M. A. de Resende, C. V. B. Martins, and A. de Fátima. J. Adv. Res., 2011, 2(1), 1–8.CrossRefGoogle Scholar
  2. 2.
    Y. Noritake, N. Umezawa, N. Kato, and T. Higuchi. Inorg. Chem., 2013, 52(7), 3653–3662.CrossRefPubMedGoogle Scholar
  3. 3.
    P. G. Cozzi. Chem. Soc. Rev., 2004, 33(7), 410–421.CrossRefPubMedGoogle Scholar
  4. 4.
    F. Habib and M. Murugesu. Chem. Soc. Rev., 2013, 42, 3278–3288.CrossRefPubMedGoogle Scholar
  5. 5.
    Y. Roy, A. Chakraborty, and T. K. Maji. Chem. Soc. Rev., 2014, 273, 139–164.Google Scholar
  6. 6.
    K. Binnemans. Chem. Rev., 2009, 109, 4283–4374.CrossRefGoogle Scholar
  7. 7.
    D. N. Woodruff, R. E. P. Winpenny, and R. A. Layfield. Chem. Rev., 2013, 113(7), 5110–5148.CrossRefPubMedGoogle Scholar
  8. 8.
    M. A. AlDamen, J. M. Clemente–Juan, E. Coronado, C. Marti–Gastaldo, and A. Gaita–Ariño. J. Am. Chem. Soc., 2008, 130(28), 8874/8875.CrossRefPubMedGoogle Scholar
  9. 9.
    M. A. AlDamen, S. Cardona–Serra, J. M. Clemente–Juan, E. Coronado, A. Gaita–Ariño, F. Luis, and O. Montero. Inorg. Chem., 2009, 48(8), 3467–3479.CrossRefPubMedGoogle Scholar
  10. 10.
    M. Ren, Z. L. Xu, S. S. Bao, T. T. Wang, Z. H. Zheng, R. A. Ferreira, L. M. Zheng, and L. D. Carlos. Dalton Trans., 2016, 45, 2974–2982.CrossRefPubMedGoogle Scholar
  11. 11.
    S. Ymada, K. Yamanouchi, and H. Kuma. Bull. Chem. Soc. Jap. Inorg. Chem., 1971, 44(12), 1448–1452.CrossRefGoogle Scholar
  12. 12.
    J. Vančo, Z. Trávníček, O. Kozák, and R. Boča. Int. Mol. Sci., 2015, 44(5), 9520–9539.CrossRefGoogle Scholar
  13. 13.
    O. Sun, T. Gao, J. Sun, G. Li, H. Li, H. Xu, C. Wang, and P. Yan. CrystEngComm, 2014, 16, 10460–10468.CrossRefGoogle Scholar
  14. 14.
    A. N. Swinburne, M. H. L. Paden, T. L. Chan, S. Randall, F. Ortu, A. M. Kenwright, and L. S. Nartajan. Inorganics, 2016, 4(3), 27–44.CrossRefGoogle Scholar
  15. 15.
    K. Binnemans. Handbook on the Physics and Chemistry of Rare Earths, 2005, 35, 107–272.CrossRefGoogle Scholar
  16. 16.
    T. Arslan, C. Öğretir, M. Tsiouri, J. C. Plakatouras, and N. Hadjiliadis. J. Coord. Chem., 2007, 60(6), 699–710.CrossRefGoogle Scholar
  17. 17.
    U. Casellato, S. Tamburini, P. Tomasin, P. A. Vigato, and M. Botta. Inorg. Chim. Acta, 1996, 247(2), 143–145.CrossRefGoogle Scholar
  18. 18.
    M. A. El–Nawawy, R. S. Farag, I. A. Sbbah, and A. M. Abu–Yamin. NY Sci. J., 1996, 4, 78–82.Google Scholar
  19. 19.
    K. Binnemans. Chem. Rev., 2009, 109, 4283–4374.CrossRefGoogle Scholar
  20. 20.
    CrysAlis CCD and CrysAlis RED (Version 1171). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England, 2002.Google Scholar
  21. 21.
    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339–341.CrossRefGoogle Scholar
  22. 22.
    G. Sheldrick. Acta Crystallogr. A, 2008, 64, 112–122.CrossRefPubMedGoogle Scholar
  23. 23.
    CrystalMaker(R). A crystal and molecular structures program for Mac and Windows. CrystalMaker Software Ltd, Oxford, England, 2016. Scholar
  24. 24.
    D. Qin, F. Han, Y. Yao, Y. Zhang, and Q. Shen. Dalton Trans., 2009, 28(28), 5535–5541.CrossRefGoogle Scholar
  25. 25.
    K. Binnemans, Y. G. Galyametdinov, R. Van Deun, D. W. Bruce, S. R. Collison, A. P. Polishchuk, I. Bike–chantaev, W. Hasse, A. V. Prosvirin, L. Tinchurina, I. Litvinov, A. Gubajdulin, A. Rakhamatullin, K. Uytterhoeven, and L. Van Meervelt. J. Am. Chem. Soc., 2000, 12(18), 4335–4344.CrossRefGoogle Scholar
  26. 26.
    K. Binnemans, D. W. Bruce, S. R. Collison, R. Van Deun, R. Galyametdinov, and Y. G. Martin. Philos. Trans. R. Soc. London A, 1999, 357, 3063–3077.CrossRefGoogle Scholar
  27. 27.
    M. Llunell, D. Casanova, J. Girera, P. Alemany, and S. Alvarez. SHAPE version 2.1. Barcelona, Spain, 2010.Google Scholar
  28. 28.
    S. Matar, W. H. Talib, M. S. Mustafa, M. S. Mubarak, and M. A. AlDamen. Arabian J. Chem., 2015, 8(6), 850–857.CrossRefGoogle Scholar
  29. 29.
    N. Charef, F. Sebti, L. Arrar, M. Djarmouni, N. Boussoualim, A. Baghiani, S. Khennouf, A. Ourari, M. A. AlDamen, M. S. Mubarak, and D. G. Peters. Polyhedron, 2015, 85, 450–456.CrossRefGoogle Scholar
  30. 30.
    M. A. AlDamen and S. F. Haddad. Acta Crystallogr. E, 2012, 68(12), 3314.CrossRefGoogle Scholar
  31. 31.
    M. Daszkiewics. CrystEngComm, 2013, 15, 10427–10430.CrossRefGoogle Scholar
  32. 32.
    J. Inanaga, H. Furuno, and T. Hayano. Chem. Rev., 2002, 102(6), 2211–2226.CrossRefPubMedGoogle Scholar
  33. 33.
    C. Camp, V. Guidal, B. Biswas, J. Pécaut, L. Dubois, and M. Mazzanti. Chem. Sci., 2012, 3, 2433–2448.CrossRefGoogle Scholar
  34. 34.
    S. Chen, A. Huang, Z. Zhang, A. Cui, M. He, and Q. Chen. Dalton Trans., 2016, 45, 3577–3589.CrossRefPubMedGoogle Scholar
  35. 35.
    M. Akhtar, Y. Chen, M. AlDamen, and M. Tong. Dalton Trans., 2017, 46(1), 116–124.CrossRefGoogle Scholar
  36. 36.
    H. Shen, W. Wang, Y. Bi, and J. Cui. Dalton Trans., 2015, 44, 18893–18901.CrossRefPubMedGoogle Scholar
  37. 37.
    L. Zhang, F. Jiang, and Y. Zhou. J. Coord. Chem., 2009, 62, 1467–1470.Google Scholar
  38. 38.
    P. Yan, W. Sun, G. Li, C. Nie, T. Gao, and Z. Yue. J. Coord. Chem., 2007, 60, 1973–1979.CrossRefGoogle Scholar
  39. 39.
    J. D. L. Dutra, T. D. Bispo, and R. O. Freire. J. Comput. Chem., 2014, 35(10), 772–775.CrossRefPubMedGoogle Scholar
  40. 40.
    S. Wang, J. Xu, J. Wang, K.–Y. Wang, S. Dang, S. Song, D. Liu, and C. Wang. J. Mater. Chem. C, 2017, 5, 6620–6628.CrossRefGoogle Scholar
  41. 41.
    W. T. Carnall, P. R. Fields, and K. Rajnak. J. Chem. Phys., 1968, 49(10), 4412–4423.CrossRefGoogle Scholar
  42. 42.
    Z. Huabin, L. Zhou, J. Wei, Z. Li, P. Lin, and S. Du. J. Mat. Chem., 2012, 22, 21210–21217.CrossRefGoogle Scholar
  43. 43.
    W. Lo, J. Zhang, W. Wong, and G. Law. Inorg. Chem., 2015, 54(8), 3725–3727.CrossRefPubMedGoogle Scholar
  44. 44.
    G. Vimal, K. P. Mani, G. Jose, P. R. Biju, C. Joseph, N. V. Unnikrishnan, and M. A. Ittyachen. J. Cryst. Growth, 2014, 404, 20–25.CrossRefGoogle Scholar
  45. 45.
    S. I. Weissman. J. Chem. Phys., 1942, 10(4), 214–217.CrossRefGoogle Scholar
  46. 46.
    M. A. AlDamen, N. Charef, H. K. Juwhari, K. Sweidan, M. S. Mubarak, and D. G. Peters. J. Chem. Crystallogr., 2016, 46(10), 411–420.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Abu-Yamin
    • 1
  • M. A. AlDamen
    • 2
    Email author
  • M. O. Sinnokrot
    • 3
  • H. K. Juwhari
    • 4
  • M. Salman
    • 1
  • I. Sarairah
    • 1
  • J. Al-Hawarin
    • 1
  • M. S. Mubarak
    • 2
  1. 1.Department of Chemistry, Faculty of ScienceAl-Hussien Bin Talal UniversityMa’anJordan
  2. 2.School of ChemistryUniversity of JordanAmmanJordan
  3. 3.Department of Chemistry, College of Arts and SciencesPetroleum InstituteAbu DhabiUAE
  4. 4.School of PhysicsUniversity of JordanAmmanJordan

Personalised recommendations