Skip to main content
Log in

A Computational Approach for Hydrolysis of the Third-Generation Anticancer Drug: Trans-Platinum(Ii) Complex of 3-Aminoflavone

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

In this study, hydrolysis of the anticancer drug trans-bis-(3-amino-flavone)dichloridoplatinum(II) (trans- Pt(3-af)2Cl2; TCAP) in gas and solution phases is studied. With the polarizable continuum model (PCM) model the complex computational study is performed in an aqueous solvent. Before the complex interaction with the target biomolecules, two typical reactions involved in the complex hydrolysis include the first and second hydrolysis processes. Thermodynamic and kinetic parameters of the hydrolysis reactions are analyzed. The variations of two structural parameters of the reaction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. H. Higgins, A. J. Tucker, B. S. J. Winkelb, and K. J. Brewer. Chem. Commun., 2012, 48, 67.

    Article  CAS  Google Scholar 

  2. C. Zhang and S. J. Lippard. Curr. Opin. Chem. Biol., 2003, 7, 481.

    Article  CAS  PubMed  Google Scholar 

  3. J. Reedijk. Eur. J. Inorg. Chem., 2009, 1303.

    Google Scholar 

  4. B. Rosenberg, V. Camp, and T. Crigas. Nature, 1965, 205, 698.

    Article  CAS  Google Scholar 

  5. K. Ito, S. Adachi, Y. Itani, M. Koyama, K. Hori, R. Chin, M. Shintani, K. Beppu, S. Kawai, and K. Saito. Jpn. J. Clin. Oncol., 1999, 29, 299.

    Article  CAS  PubMed  Google Scholar 

  6. T. C. Johnstone and S. J. Lippard. Inorg. Chim. Acta, 2015, 424, 254.

    Article  CAS  Google Scholar 

  7. J. J. Wilson and S. J. Lippard. Chem. Rev., 2014, 114, 4470.

    Article  CAS  PubMed  Google Scholar 

  8. J. Alemán, V. D. Solar, A. Alvarez–Valdés, C. Ríos–Luci, J. M. Padrón, and C. Navarro–Ranninger. MedChemComm, 2011, 2, 789.

    Article  CAS  Google Scholar 

  9. M. Zhu and L. Zhou. Comput. Theor. Chem., 2015, 1051, 24.

    Article  CAS  Google Scholar 

  10. S. Banerjee and A. K. Mukherjee. Comput. Theor. Chem., 2012, 991, 116.

    Article  CAS  Google Scholar 

  11. S. Banerjee, P. S. Sengupta, and A. K. Mukherjee. Chem. Phys. Lett., 2010, 487, 108.

    Article  CAS  Google Scholar 

  12. M. E. Alberto, M. F. A. Lucas, and M. Pavelka. J. Phys. Chem. B, 2009, 113, 14473.

    Article  CAS  PubMed  Google Scholar 

  13. M. E. Alberto, M. F. Lucas, M. Pavelka, and N. Russo. J. Phys. Chem. B, 2008, 112, 10765.

    Article  CAS  PubMed  Google Scholar 

  14. O. Bradáč, T. Zimmermann, and J. V. Burda. J. Mol. Model., 2008, 14, 705.

    Article  CAS  PubMed  Google Scholar 

  15. J. Raber, C. Zhu, and L. A. Eriksson. J. Phys. Chem. B, 2005, 109, 11006.

    Article  CAS  PubMed  Google Scholar 

  16. A. Sarmah and R. K. Roy. RSC Adv., 2013, 3, 2822.

    Google Scholar 

  17. M. E. Alberto, C. Cosentino, and N. Russo. Struct. Chem., 2012, 23, 831.

    Article  CAS  Google Scholar 

  18. M. Fabijańska, K. Studzian, L. Szmigiero, A. J. Rybarczyk–Pirek, A. Pfitzner, B. Cebula–Obrzut, P. Smolewski, E. Zynera, and J. Ochocki. Dalton Trans., 2015, 44, 938.

    Article  CAS  PubMed  Google Scholar 

  19. J. K.–C. Lau and D. V. Deubel. J. Chem. Theor. Comput., 2006, 2, 103.

    Article  CAS  Google Scholar 

  20. D. V. Deubel. J. Am. Chem. Soc., 2006, 128, 1654.

    Article  CAS  PubMed  Google Scholar 

  21. J. V. Burda, M. Zeizinger, and J. Leszczynski. J. Comput. Chem., 2005, 26, 907.

    Article  CAS  PubMed  Google Scholar 

  22. M. Pavelka, M. F. A. Lucas, and N. Russo. Chem. Eur. J., 2007, 13, 10108.

    Article  CAS  PubMed  Google Scholar 

  23. Z. Chval and M. Sip. J. Mol. Struct.:THEOCHEM, 2000, 532, 59.

    Article  CAS  Google Scholar 

  24. A. Robetazzi and J. A. Platts. J. Comput. Chem., 2004, 25, 1060.

    Article  CAS  Google Scholar 

  25. J. V. Burda, M. Zeizinger, and J. Leszczynski. J. Comput. Chem., 2005, 26, 907.

    Article  CAS  PubMed  Google Scholar 

  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghava–chari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian 09. Revision A.02. Wallingford CT: Gaussian, Inc., 2009.

    Google Scholar 

  27. D. Becke. Phys. Rev. A, 1998, 38, 3098.

    Article  Google Scholar 

  28. J. P. Perdew. Phys. Rev. B, 1986, 33, 8822.

    Article  CAS  Google Scholar 

  29. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople. J. Chem. Phys., 1980, 72, 650.

    Article  CAS  Google Scholar 

  30. A. J. H. Wachters. J. Chem. Phys., 1970, 52, 1033.

    Article  CAS  Google Scholar 

  31. P. J. Hay. J. Chem. Phys., 1977, 66, 4377.

    Article  CAS  Google Scholar 

  32. A. D. McLean and G. S. Chandler. J. Chem. Phys., 1980, 72, 5639.

    Article  CAS  Google Scholar 

  33. D. Rappoport and F. Furche. J. Chem. Phys., 2010, 133, 134105

    Article  CAS  PubMed  Google Scholar 

  34. D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss. Theor. Chim. Acta, 1990, 77, 123.

    Article  CAS  Google Scholar 

  35. C. Gonzalez and H. B. Schlegel. J. Chem. Phys., 1990, 94, 5523.

    Article  CAS  Google Scholar 

  36. C. Gonzalez and H. B. Schlegel. J. Chem. Phys., 1989, 90, 2154.

    Article  CAS  Google Scholar 

  37. J. Tomasi, B. Mennucci, and R. Cammi. Chem. Rev., 2005, 105, 2999.

    Article  CAS  PubMed  Google Scholar 

  38. H. J. Eyring. Chem. Phys., 1935, 3, 107.

    CAS  Google Scholar 

  39. W. F. K. Wynne–Jones and H. J. Eyring. Chem. Phys., 1935, 3, 492.

    Google Scholar 

  40. H. Eyring. Chem. Rev., 1935, 17, 65.

    Article  CAS  Google Scholar 

  41. J. K. C. Lau and D. V. Deubel. J. Chem. Theor. Comput., 2006, 2, 103.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ghiasi.

Additional information

Original Russian Text © 2018 N. Sadeghi, R. Ghiasi, S. Jamehbozorgi.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 59, No. 8, pp. 1856–1860, November-December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, N., Ghiasi, R. & Jamehbozorgi, S. A Computational Approach for Hydrolysis of the Third-Generation Anticancer Drug: Trans-Platinum(Ii) Complex of 3-Aminoflavone. J Struct Chem 59, 1791–1796 (2018). https://doi.org/10.1134/S002247661808005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247661808005X

Keywords

Navigation