Journal of Structural Chemistry

, Volume 59, Issue 7, pp 1624–1630 | Cite as

Monte Carlo Simulation of the Local Ordering of Water Molecules. II. Spatial Correlations and Hydrogen Bonds

  • A. V. TeplukhinEmail author


The Monte Carlo method is used to calculate spatial distribution functions of oxygen and hydrogen atoms within a large-size water model (33666 SPC/E water molecules) under atmospheric pressure at room temperature. The work focuses on structural interpretation of local densities of water at the distances of about 3–5 Å from its molecules. The distribution of the distances between water molecules connected by chains of two or more hydrogen bonds indicates that the molecules between the first and second peaks of the radial distribution function (RDF) are mainly second and, to a lesser extent, third neighbors along the chain of bonds.


water Monte Carlo structure simulation distribution functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Eisenberg and W. Kauzmann. The structure and properties of water. N.Y.: Oxford University Press, 1969.Google Scholar
  2. 2.
    J. L. Finney. Philos. Trans. R. Soc. B, 2004, 359, 1145.CrossRefGoogle Scholar
  3. 3.
    J. D. Bernal and R. H. Fowler. J. Chem. Phys., 1933, 1,515.CrossRefGoogle Scholar
  4. 4.
    A. H. Narten and H. A. Levy. Science, 1969, 165,447.CrossRefGoogle Scholar
  5. 5.
    P. Krindel and I. Eliezer. Coord. Chem. Rev., 1971, 6,217.CrossRefGoogle Scholar
  6. 6.
    G. G. Malenkov. Fizicheskaya khimiya. Sovremenniye problem [in Russian] /Ya. M. Kolotyrkin (Ed.). M.: Khimiya, 1984,41.Google Scholar
  7. 7.
    G. Malenkov. J. Phys.: Condens. Matter, 2009, 21, 283101.Google Scholar
  8. 8.
    A. Nilsson and L. G. M. Pettersson. Nat. Commun., 2015, 6, 8998.CrossRefGoogle Scholar
  9. 9.
    A. K. Soper. Pure Appl. Chem., 2010, 82, 1855.CrossRefGoogle Scholar
  10. 10.
    A. Rahman and F. H. Stillinger. J. Chem. Phys., 1971, 55, 3336.CrossRefGoogle Scholar
  11. 11.
    I. M. Svishchev and P. G. Kusalik. J. Chem. Phys., 1993, 99, 3049.CrossRefGoogle Scholar
  12. 12.
    A. V. Teplukhin. J. Struct. Chem., 2008, 49(2),270.CrossRefGoogle Scholar
  13. 13.
    A. M. Saitta and F. Datchi. Phys. Rev. E, 2003, 67, 020201.CrossRefGoogle Scholar
  14. 14.
    P. Jedlovszky, L. B. Partay, A. P. Bartok, et al. J. Chem. Phys., 2008, 128, 244503.CrossRefGoogle Scholar
  15. 15.
    N. A. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, et al. J. Chem. Phys., 1953, 21, 1087.CrossRefGoogle Scholar
  16. 16.
    M. P. Allen and D. J. Tildesley. Computer simulation of liquids. N.Y.: Oxford University Press, 1987.Google Scholar
  17. 17.
    H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma. J. Phys. Chem., 1987, 91, 6269.CrossRefGoogle Scholar
  18. 18.
    G. Hummer, D. M. Soumpasis, and M. Neumann. J. Phys.: Condens. Matter, 1994, 6, A141.Google Scholar
  19. 19.
    A. V. Teplukhin. J. Struct. Chem., 2016, 57(8), 1627.CrossRefGoogle Scholar
  20. 20.
    A. V. Teplukhin. J. Struct. Chem., 2013, 54(1),65.CrossRefGoogle Scholar
  21. 21.
    A. V. Teplukhin. J. Struct. Chem., 2018, 59(6), 1368.CrossRefGoogle Scholar
  22. 22.
    S. Katzoff. J. Chem. Phys., 1934, 2,841.CrossRefGoogle Scholar
  23. 23.
    J. Morgan and B. E. Warren. J. Chem. Phys., 1938, 6,666.CrossRefGoogle Scholar
  24. 24.
    F. H. Stillinger and A. Rahman. J. Chem. Phys., 1974, 60, 1545.CrossRefGoogle Scholar
  25. 25.
    P. G. Kusalik and I. M. Svishchev. Science, 1994, 265, 1219.CrossRefGoogle Scholar
  26. 26.
    J. A. Pople. Proc. R. Soc. London, A, 1951, 205,163.Google Scholar
  27. 27.
    M. G. Sceats, M. Stavola, and S. A. Rice. J. Chem. Phys., 1979, 70, 3927.CrossRefGoogle Scholar
  28. 28.
    A. V. Teplukhin. Russ. Chem. Bull., 1999, (5), 852.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Mathematical Problems of Biology Russian Academy of SciencesPushchinoRussia

Personalised recommendations