Skip to main content

Oxidation of FO and N2 Molecules on the Surfaces of Metal-Adopted Boron Nitride Nanostructures as Efficient Catalysts

Abstract

It is of high importance to finding efficient catalysts for oxidation of nitrogen (N2) and fluorine monoxide (FO) molecules. In this study, Ge–B36N36 and Sn–BNNT are formed and the surfaces of Ge–B36N36 and Sn–BNNT via the O2 molecule are activated. Oxidation of N2 and FO on the surfaces of O2–Ge–B36N36 and O2–Sn–BNNT via Langmuir–Hinshelwood (LH) and Eley–Rideal (ER) mechanisms are investigated. The results show that O2–Ge–B36N36 and O2–Sn–BNNT can oxidize the N2 and FO molecules via two-step reactions, respectively. Results show that N2 and FO oxidation on the O2–Ge–B36N36 and O2–Sn–BNNT surfaces via the LH mechanism has a lower energy barrier than that of the ER mechanism. Finally, O2–Ge–B36N36 and O2–Sn–BNNT are acceptable catalysts with a high performance for the oxidation of N2 and FO molecules, respectively.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C. Zhang, B. Yoon, and U. Landman. J. Am. Chem. Soc., 2007, 129, 2228/2229.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    J. Zhang, H. Jin, M. B. Sullivan, F. C. H. Lim, and P. Wu. Phys. Chem. Chem. Phys., 2009, 11, 1441–1446.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    N. Lopez, T. Janssens, B. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, and J. K. Nørskov. J. Catal., 2004, 223, 232–235.

    Article  CAS  Google Scholar 

  4. 4.

    H.–Y. Su, M.–M. Yang, X.–H. Bao, and W.–X. Li. J. Phys. Chem. C, 2008, 112, 17303–17310.

    Article  CAS  Google Scholar 

  5. 5.

    S. Piccinin and M. Stamatakis. ACS Catal., 2014, 4, 2143–2152.

    Article  CAS  Google Scholar 

  6. 6.

    M. S. Chen, Y. Cai, Z. Yan, K. K. Gath, S. Axnanda, and D. W. Goodman. Surf. Sci., 2007, 601, 5326–5331.

    Article  CAS  Google Scholar 

  7. 7.

    A. K. Geim and K. S. Novoselov. Nat. Mater., 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  8. 8.

    K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. A. Dubonos, I. Grigorieva, and A. Firsov. Science, 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  9. 9.

    Y. Huang, J. Liang, and Y. Chen. Small, 2012, 8, 1805–1834.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff. Nano Lett., 2008, 8, 3498–3502.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    H. Lee, J. Ihm, M. L. Cohen, and S. G. Louie. Nano Lett., 2010, 10, 793–798.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    G. K. Dimitrakakis, E. Tylianakis, and G. E. Froudakis. Nano Lett., 2008, 8, 3166–3170.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    G. Eda, G. Fanchini, and M. Chhowalla. Nat. Nanotechnol., 2008, 3, 270–274.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang. Crit. Rev. Solid State, 2010, 35, 52–71.

    Article  CAS  Google Scholar 

  15. 15.

    C. O. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C. H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie, and A. Zettl. Science, 2009, 323, 1705–1708.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    A. C. Neto, F. Guinea, N. Peres, K. S. Novoselov, and A. K. Geim. Rev. Mod. Phys., 2009, 81, 109.

    Article  CAS  Google Scholar 

  17. 17.

    B. Guo, L. Fang, B. Zhang, and J. R. Gong. Insciences J., 2011, 80–89.

    Google Scholar 

  18. 18.

    Y.–H. Lu, M. Zhou, C. Zhang, and Y.–P. Feng. J. Phys. Chem. C, 2009, 113, 20156–20160.

    Article  CAS  Google Scholar 

  19. 19.

    F. Li, J. Zhao, and Z. Chen. J. Phys. Chem. C, 2012, 116, 2507–2514.

    Article  CAS  Google Scholar 

  20. 20.

    L. Wang, Q. Luo, W. Zhang, and J. Yang. Int. J. Hydrogen Energy, 2014, 39, 20190–20196.

    Article  CAS  Google Scholar 

  21. 21.

    G. H. Lee. Ceram. Int., 2013, 39, 7989–7993.

    Article  CAS  Google Scholar 

  22. 22.

    S. M. Vesecky, J. Paul, and D. W. Goodman. J. Phys. Chem., 1996, 100, 15242–15246.

    Article  CAS  Google Scholar 

  23. 23.

    M. A. Farrokhzad and T. I. Khan. Mater. Sci. Eng., 2014, 60, 012011–012014.

    Google Scholar 

  24. 24.

    W. H. Moon, M. S. Son, and H. J. Hwang. Appl. Sur. Sci., 2007, 253, 7078–7081.

    Article  CAS  Google Scholar 

  25. 25.

    P. W. Fowler, T. Heine, D. Mitchell, R. Schmid, and G. Seifert. J. Chem. SOC., Faraday Trans., 1996, 12, 2197–2201.

    Article  Google Scholar 

  26. 26.

    H. Si, G. Lian, A. Wang, D. Cui, M. Zhao, Q. Wang, and C. Wong. Nano Lett., 2015, 15, 8122–8128.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    T. Oku and M. Kuno. Diamond Relat. Mater., 2003, 12, 840–845.

    Article  CAS  Google Scholar 

  28. 28.

    T. Oku, I. Narita, A. Nishiwaki. Mater Manuf Process, 2004, 19, 1215–1239.

    Article  CAS  Google Scholar 

  29. 29.

    L. Han and P. Krstic. Nanotechnology, 2017, 28, 701–706.

    Article  CAS  Google Scholar 

  30. 30.

    T. Wehling, K. Novoselov, S. Morozov, E. Vdovin, M. Katsnelson, A. Geim, and A. Lichtenstein. Nano Lett., 2008, 8, 173–177.

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    M. Zhao and D. G. Truhlar. Theor. Chem. Acc., 2008, 120, 215–241.

    Article  CAS  Google Scholar 

  32. 32.

    M. D. Esrafili and R. Nurazar. Comput. Mater. Sci., 2014, 92, 172–177.

    Article  CAS  Google Scholar 

  33. 33.

    Y. Li, Z. Zhou, G. Yu, W. Chen, and Z. Chen. J. Phys. Chem. C, 2010, 114, 6250–6254.

    Article  CAS  Google Scholar 

  34. 34.

    C. Huang, X. Ye, C. Chen, S. Lin, and D. Xie. Comput. Theor. Chem., 2013, 1011, 5–10.

    Article  CAS  Google Scholar 

  35. 35.

    S. Wannakao, T. Nongnual, P. Khongpracha, T. Maihom, and J. Limtrakul. J. Phys. Chem. C, 2012, 116, 16992–16998.

    Article  CAS  Google Scholar 

  36. 36.

    P. Zhao, Y. Su, Y. Zhang, S.–J. Li, and G. Chen. Chem. Phys. Lett., 2011, 515, 159–162.

    Article  CAS  Google Scholar 

  37. 37.

    E. H. Song, J. M. Yan, J. S. Lian, and Q. Jiang. J. Phys. Chem. C, 2012, 116, 20342–20348.

    Article  CAS  Google Scholar 

  38. 38.

    M. D. Esrafili, P. Nematollahi, and H. Abdollahpour. Appl. Surf. Sci., 2016, 378, 418–425.

    Article  CAS  Google Scholar 

  39. 39.

    M. D. Esrafili and N. Saeidi. Phys. E, 2015, 74, 382–387.

    Article  CAS  Google Scholar 

  40. 40.

    M. D. Esrafili, P. Nematollahi, and R. Nurazar. Superlattices Microstruct., 2016, 92, 60–67.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Pourabadeh.

Additional information

Original Russian Text © 2018 S. A. Pourabadeh, B. Nasrollahzadeh, R. Razavi, A. Bozorgian, M. Najafi.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 59, No. 6, pp. 1536–1453, July-August, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pourabadeh, A., Nasrollahzadeh, B., Razavi, R. et al. Oxidation of FO and N2 Molecules on the Surfaces of Metal-Adopted Boron Nitride Nanostructures as Efficient Catalysts. J Struct Chem 59, 1484–1491 (2018). https://doi.org/10.1134/S0022476618060355

Download citation

Keywords

  • catalyst
  • nanostructure
  • metal adoption
  • oxidation reaction
  • adsorption energy