Skip to main content
Log in

Catalytic Properties of Gadolinium Oxide in the Removal of Doxycycline with Anticancer Activity

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 01 February 2019

An Erratum to this article was published on 01 January 2019

This article has been updated

Abstract

We located multiple binding sites for doxycycline on DNA under physiological conditions, using spectroscopic methods and molecular modeling. Fourier-transformed infrared spectroscopy and UV-visible spectroscopy are used to determine the ligand intercalation and external binding modes, the binding constant, and the stability of doxycycline–DNA complexes in an aqueous solution. Spectroscopic evidence shows that the doxycycline (DOXY) complexation with DNA occurs via G–C and A–T, and a PO2 group with a binding constant K(DOXY–DNA) = 1.4×104 M–1. Uniform rare-earth gadolinium oxide (Gd2O3), as formed through a precipitation process using hexamine as template, are characterized using X-ray diffraction and scanning electron microscopy. Another aim of the study was to investigate the degradation of the DOXY antibiotic by nanosized Gd2O3 under ultraviolet irradiation. Various experimental parameters such as initial DOXY concentrations, initial Gd2O3 concentration, initial pH, reaction times are investigated. According to the results, this method can be good in the removal of DOXY.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 23 April 2019

    In the original publication the affiliation was not correct. The correct affiliation is: Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

  • 06 May 2019

    In the original publication the name of one of the authors had been misspelled and the authors had been listed in the wrong order. The correct spelling of the names of the authors and their order is: M. Masoudinia, A. Bagheri ghomi.

References

  1. T. Onoda, T. Ono, D. K. Dhar, et al. J. Int. Du Cancer, 2006, 118, 1309–1315.

    Article  CAS  Google Scholar 

  2. K. Son, S. Fujioka, T. Iida, et al. Anticancer Res., 2009, 29, 3995–4003.

    CAS  PubMed  Google Scholar 

  3. Y. Charles Cao. J. Am. Chem. Soc., 2004, 126, 7456/7457.

    Article  CAS  PubMed  Google Scholar 

  4. K. Takahashi, S. Tazaki, J. Miyahara, Y. Karasawa, and N. Nimura. Nucl. Instrum. Methods Phys. Res., 1996, A377, 119.

    Google Scholar 

  5. G. Gunduz and I. Uslu. J. Nucl. Mater., 1996, 231, 113–118.

    Article  CAS  Google Scholar 

  6. A. C. Faure, S. Dufort, V. Josserand, P. Perriat, J. L. Coll, and S. O. Roux. Small, 2009, 5, 2565–2575.

    Article  CAS  PubMed  Google Scholar 

  7. L. E. Van Vlerken and M. M. Amiji. Drug Delivery, 2006, 3, 205–216.

    CAS  Google Scholar 

  8. J. Ma, L. T. B. La, I. Zaman, Q. Meng, L. Luong, D. Ogilvie, and H. C. Kuan. Macromol. Mater. Eng., 2011, 296, 465–474.

    Article  CAS  Google Scholar 

  9. P. Caravan, J. J. Ellison, T. J. McMurry, and R. B. Lauffer. Chem. Rev., 1999, 99, 2293–2352.

    Article  CAS  Google Scholar 

  10. M. Shokouhimehr, E. S. Soehnlen, J. Hao, M. Griswold, C. Flask, X. Fan, J. P. Basilion, S. Basu, and S. D. Huang. J. Mater. Chem., 2010, 20, 5251–5259.

    Article  CAS  Google Scholar 

  11. R. Lv, S. Gai, Y. Dai, N. Niu, F. He, and P. Yang. ACS. Appl. Mater. Interfaces, 2013, 5, 10806–10818.

    Article  CAS  PubMed  Google Scholar 

  12. Q. Ju, D. Tu, Y. Liu, R. Li, H. Zhu, J. Chen, Z. Chen, M. Huang, and X. Chen. J. Am. Chem. Soc., 2011, 134, 1323–1330.

    Article  CAS  PubMed  Google Scholar 

  13. H. K. Cho, H.–J. Cho, S. Lone, D.–D. Kim, J. H. Yeum, and I. W. Cheong. J. Mater. Chem., 2011, 21, 15486–15493.

    Article  Google Scholar 

  14. L. B. T. La, Y. K. Leong, C. Leatherday, P. I. Au, K. J. Hayward, and L. C. Zhang. Colloids Surf., 2016, A501, 75–82.

    Google Scholar 

  15. M. A. Malik, M. Y. Wani, and M. A. Hashim. Arabian J. Chem., 2012, 5, 397–417.

    Article  CAS  Google Scholar 

  16. D. Hari Prasad, H. R. Kim, J. S. Park, J. W. Son, B. K. Kim, H. W. Lee, and J. H. Lee. J. Alloys Compd., 2010, 495, 238–241.

    Article  CAS  Google Scholar 

  17. I. Muneer, M. A. Farrukh, S. Javaid, and M. Shahid. Superlattices Microstruct., 2015, 77, 256–266.

    Article  CAS  Google Scholar 

  18. N. Zhang, R. Yi, L. Zhou, G. Gao, R. Shi, G. Qiu, and X. Liu. Mater. Chem. Phys., 2009, 114, 160–167.

    Article  CAS  Google Scholar 

  19. T. Tsuzuki, E. Pirault, and P. McCormick. Nanostruct. Mater., 1999, 11, 125–131.

    Article  CAS  Google Scholar 

  20. T. Tsuzuki, W. T. Harrison, and P. G. McCormick. J. Alloys Compd., 1998, 281, 146–151.

    Article  CAS  Google Scholar 

  21. R. Bazzi, M. Flores–Gonzalez, C. Louis, K. Lebbou, C. Dujardin, A. Brenier, W.Zhang, O. Tillement, E. Bernstein, and P. Perriat. J. Lumin, 2003, 102, 445–450.

    Article  CAS  Google Scholar 

  22. J. L. Bridot, A. C. Faure, S. Laurent, C. Riviere, C. Billotey, B. Hiba, M. Janier, V. Josserand, J. L. Coll, and L. Vander. J. Am. Chem. Soc., 2007, 129, 5076–5084.

    Article  CAS  Google Scholar 

  23. L. Faucher, M. L. Tremblay, J. Lagueux, Y. Gossuin, and M. A. Fortin. ACS. Appl. Mater. Interfaces, 2012, 4, 4506–4515.

    Article  CAS  PubMed  Google Scholar 

  24. F. Chen, M. Chen, C. Yang, J. Liu, N. Luo, G. Yang, D. Chen, and L. Li. Phys. Chem. Chem. Phys., 2015, 17, 1189–1196.

    Article  CAS  PubMed  Google Scholar 

  25. A. Mignot, C. Truillet, F. Lux, L. Sancey, C. Louis, F. Denat, F. Boschetti, L. Bocher, A. Gloter, and O. Stéphan. Chem. Eur. J., 2013, 19, 6122–6136.

    Article  CAS  PubMed  Google Scholar 

  26. A. Betke and G. Kickelbick, Bottom–up. Inorganics, 2014, 2, 1–15.

    Article  CAS  Google Scholar 

  27. M. Khorasani–Motlagh, M. Noroozifar, and S. Mirkazehi–Rigi. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 75, 598–603.

    Article  CAS  PubMed  Google Scholar 

  28. N. Shahabadi and S. Hadidi. Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2012, 96, 278–283.

    Article  CAS  Google Scholar 

  29. C. Wei, J. Wang, and M. Zhang. Biophys. Chem., 2010, 148, 51–55.

    Article  CAS  PubMed  Google Scholar 

  30. K. Bhadra and G. S. Kumar. Biochim. Biophys. Acta, 2011, 1810, 485–496.

    Article  CAS  PubMed  Google Scholar 

  31. J. Perrin. Brownian Movement and Molecular Reality. London: Taylor & Francis, 1910.

    Google Scholar 

  32. W. Yu and H. Xie. J. Nanomater., 2012, 20, 435873–435880.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bagheri.

Additional information

Original Russian Text © 2018 A. Bagheri, M. Masoudinia.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 59, No. 6, pp. 1530–1535, July-August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, A., Masoudinia, M. Catalytic Properties of Gadolinium Oxide in the Removal of Doxycycline with Anticancer Activity. J Struct Chem 59, 1478–1483 (2018). https://doi.org/10.1134/S0022476618060343

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618060343

Keywords

Navigation