Deformation Behavior of Three-Dimensional Carbon Structures Under Hydrostatic Compression

Abstract

The paper presents the results of numerical simulation aimed at studying the deformation behavior of carbon structures containing carbon atoms with various coordination numbers and, consequently, various electronic configurations and properties. Namely, the method of molecular dynamics was used to study the deformation behavior of two different structures of crumpled graphene (sp2-material formed by graphene flakes bonded by Van der Waals forces) and carbon diamond-like phases (rigid sp3-structures) under hydrostatic compression. Stress-strain curves have been obtained, structural features have been shown to affect mechanical properties of three-dimensional carbon structures.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Е. А. Belenkov, V. V. Ivanovskaya, and A. L. Ivanovskii. Nanodiamonds and other carbon nanomaterials. Computer Science. Yekaterinburg. UrB RAS, 2008. [in Russian]

    Google Scholar 

  2. 2.

    R. R. Mulykov and J. А. Baimova. Carbon nanomaterials. Ufa: RIC BashSU, 2015. [in Russian]

    Google Scholar 

  3. 3.

    J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M. J. Buehler, and X. Zhao. Nature Mat., 2013, 12, 321.

    Article  CAS  Google Scholar 

  4. 4.

    J. А. Baimova, R. Т. Murzaev, and S. V. Dmitriev. Phys. Solid State, 2014, 56, 1946

    Article  CAS  Google Scholar 

  5. 5.

    J. A. Baimova, B. Liu, S. V. Dmitriev, N. Srikanth, and K. Zhou. Phys. Chem. Chem. Phys., 2014, 16, 1950.

    Article  Google Scholar 

  6. 6.

    J. A. Baimova, B. Liu, S. V. Dmitriev, and K. Zhou. J. Phys. D. Appl. Phys., 2015, 48, 095302.

    Article  CAS  Google Scholar 

  7. 7.

    H. Zhan, G. Zhang, J. M. Bell, and Y. Gu. Carbon, 2016, 107, 304.

    Article  CAS  Google Scholar 

  8. 8.

    G. Chevrot, E. Bourasseau, N. Pineau, and J.–B. Maillet. Carbon, 2009, 47, 3392.

    Article  CAS  Google Scholar 

  9. 9.

    D. S. Lisovenko, J. А. Baimova, L. Kh. Rysaeva, V. А. Gorodtsov, and S. V. Dmitriev. Phys. Solid State, 2017, 59, 820.

    Article  CAS  Google Scholar 

  10. 10.

    D. S. Lisovenko, J. A. Baimova, L. Kh. Rysaeva, V. A. Gorodtsov, A. I. Rudskoy, and S. V. Dmitriev. PSS (b), 2016, 1–8, 1295.

    Google Scholar 

  11. 11.

    E. A. Belenkov and V. A. Greshnyakov. Phys. Solid State, 2016, 58, 2145.

    Article  CAS  Google Scholar 

  12. 12.

    A. San–Miguel. Chem. Soc. Rev., 2006, 35, 876.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    M. G. Fyta and P. C. Kelires. Fullerenes, Nanotubes, Carbon Nanostruct., 2005, 13, 13.

    Article  CAS  Google Scholar 

  14. 14.

    R. Moret. Acta Crystallogr., 2005, A61, 62.

    Google Scholar 

  15. 15.

    M. Nunez–Regueiro, L. Marques, and J.–L. Hodeau. The Physics of fullerene–based and fullerene–related materials. / W. Andreoni. Boston: Kluwer Academic Dordrecht, 2000.

    Google Scholar 

  16. 16.

    A. Merlen, N. Bendiab, P. Toulemonde, et al. Phys. Rev. B: Condens. Matter Mater. Phys., 2005, 72, 035409.

    Article  CAS  Google Scholar 

  17. 17.

    S. Lebedkin, K. Arnold, O. Kiowski, F. Hennrich, and M. M. Kappes. Phys. Rev. B: Condens. Matter Mater. Phys., 2006, 73, 094109.

    Article  CAS  Google Scholar 

  18. 18.

    V. N. Khabashesku, Z. Gu, B. Brinson, J. L. Zimmerman, J. L. Margrave, V. A. Davydov, L. S. Kashevarova, and A. V. Rakhmanina. J. Phys. Chem. B, 2002, 106, 11155.

    Article  CAS  Google Scholar 

  19. 19.

    M. Popov, M. Kyotani, R. J. Nemanich, and Y. Koga. Phys. Rev. B: Condens. Matter Mater. Phys., 2002, 65, 033408.

    Article  CAS  Google Scholar 

  20. 20.

    J. E. Field. The Properties of Natural and Synthetic Diamond. London: Academic, 1997.

    Google Scholar 

  21. 21.

    S. J. Clark, C. J. Ackland, and J. Crain. Phys. Rev. B, 1995, 52, 15035.

    Article  CAS  Google Scholar 

  22. 22.

    F. Occelli, P. Loubeyre, and R. Letoullec. Nat. Mater., 2003, 2, 151.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    H. K. Mao and R. J. Hemley. Nature, 1991, 351, 721.

    Article  CAS  Google Scholar 

  24. 24.

    I. R. Shein, M. V. Kuznetsov, and A. N. Enyashin. J. Struct. Chem., 2016, 57(4), 808–811.

    Article  CAS  Google Scholar 

  25. 25.

    N. F. Yudanov, A. V. Okotrub, L. G. Bulusheva, et al. J. Struct. Chem., 2011, 52(5), 903–909.

    Article  CAS  Google Scholar 

  26. 26.

    Е.А. Belenkov, A. L. Ivanovskii, S. N. Ul′yanov, et al. J. Struct. Chem., 2005, 46, 961.

    Article  CAS  Google Scholar 

  27. 27.

    Е. А. Belenkov and V. А. Greshnyakov. J. Struct. Chem., 2014, 55(3), 409–417.

    Article  CAS  Google Scholar 

  28. 28.

    Е. А. Belenkov and V. А. Greshnyakov. Phys. Solid State, 2013, 55, 1754.

    Article  CAS  Google Scholar 

  29. 29.

    Е. А. Belenkov and V. А. Greshnyakov. Phys. Solid State, 2015, 57, 205.

    Article  CAS  Google Scholar 

  30. 30.

    Е. А. Belenkov and V. А. Greshnyakov. J. Exp. Theor. Phys., 2011, 140, 99.

    Google Scholar 

  31. 31.

    Е. А. Belenkov and V. А. Greshnyakov. Phys. Solid State, 2015, 57, 2331.

    Article  CAS  Google Scholar 

  32. 32.

    Е. А. Belenkov and I. V. Shakhova. Phys. Solid State, 2011, 53, 2385.

    Article  CAS  Google Scholar 

  33. 33.

    K. А. Krylova, J. А. Baimova, S. V. Dmitriev, and R. R. Mulykov. Phys. Solid State, 2016, 58, 394.

    Article  CAS  Google Scholar 

  34. 34.

    S. Stuart, A. Tutein, and J. Harrison. J. Chem. Phys., 2000, 112, 6472.

    Article  CAS  Google Scholar 

  35. 35.

    R. T. Murzaev, D. V. Bachurin, E. A. Korznikova, and S. V. Dmitriev. Phys. Lett. A, 2017, 381, 1003.

    Article  CAS  Google Scholar 

  36. 36.

    M. Jafary–Zadeh and Y.–W. Zhang. Sci. Rep., 2015, 5, 12848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    S. P. Kiselev and Е. V. Zhirov. Phys. Mesomech., 2012, 15, 125.

    Google Scholar 

  38. 38.

    N. D. Orechov and V. V. Stegailov. High Temp., 2014, 52, 198.

    Article  CAS  Google Scholar 

  39. 39.

    A. E. Galashev, L. A. Elshina, and R. V. Muradymov. Russ. J. Phys. Chem., 2016, 90, 2444.

    Article  CAS  Google Scholar 

  40. 40.

    J. T. Titantah and D. Lamoen. J. Phys.Condens. Matter., 2008, 20, 035216.

    Article  CAS  Google Scholar 

  41. 41.

    A. Y. Belov and H. U. Jager. Diamond Relat. Mater., 2005, 14, 1014.

    Article  CAS  Google Scholar 

  42. 42.

    S. Reinke and W. Kulisch. Surf. Coat. Technol., 1997, 97, 23.

    Article  CAS  Google Scholar 

  43. 43.

    M. Park, J. Jang, C. Lee, and C. Lee. Appl. Phys. Lett., 2005, 86, 023110.

    Article  CAS  Google Scholar 

  44. 44.

    A. Lobkovsky, S. Gentges, H. Li, D. Morse, and T. A. Witten. Science, 1995, 270, 1482.

    Article  CAS  Google Scholar 

  45. 45.

    T. Tallinen, J. A. Astrom, and J. Timonen. Nat. Mater., 2009, 8, 25.

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    K. Matan, R. Williams, T. Witten, and S. Nagel. Phys. Rev. Lett., 2002, 88, 076101.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. A. Baimova.

Additional information

Original Russian Text © 2018 J. A. Baimova, L. Kh. Rysaeva.

Translated from Zhurnal Strukturnoi Khimii, Vol. 59, No. 4, pp. 921–928, May-June, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baimova, J.A., Rysaeva, L.K. Deformation Behavior of Three-Dimensional Carbon Structures Under Hydrostatic Compression. J Struct Chem 59, 884–890 (2018). https://doi.org/10.1134/S0022476618040200

Download citation

Keywords

  • crumpled graphene
  • diamond-like structure
  • inelastic deformation
  • mechanical properties
  • molecular dynamics