Skip to main content
Log in

The Impact of SF6 Plasma on the Properties of Graphene Oxide

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The paper considers the effect of SF6 plasma-chemical treatment on the processes of defect formation and the electrical properties of graphene oxide partially reduced by heat treatment. The fluorine content on the graphene oxide surface is shown to increase as a result of SF6 plasma treatment, depending on the plasma power and the duration of the treatment. The measured electrical parameters testify increased resistance of graphene oxide films as a result of plasma treatment. The rate of resistance change depends on the thickness of the films and is minimal for thin structures (∼10 nm). Further heating of graphene oxide decreases its resistance, but the content of surface fluorine changes insignificantly. Thin films (10-15 nm) exhibit the smallest change of their resistance as a result of annealing. The highest rate of resistance change is observed for non-fluorinated samples. The obtained data indicate that only several nanometers of nearsurface layers are subject to SF6 plasma fluorination. The results testify the possibility of using SF6 plasma treatment as an effective tool for selective fluorination of graphene oxide surface layers and controlled modification of its properties without changing the bulk properties of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. D. Grayfer, V. G. Makotchenko, A. S. Nazarov, S. J. Kim, and V. E. Fedorov. Russ. Chem. Rev., 2011, 80(8), 784.

    Article  CAS  Google Scholar 

  2. M. F. Craciun, I. Khrapach, M. D. Barnes, and S. Russo. J. Phys Condens. Matter., 2013, 25, 423201.

    Article  CAS  PubMed  Google Scholar 

  3. S. Pei and H.–M. Cheng. Carbon, 2012, 50, 3210.

    Article  CAS  Google Scholar 

  4. R. R. Nair, J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, and E. S. Snow. Small, 2010, 6(24), 2877.

    Article  CAS  PubMed  Google Scholar 

  5. J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, and E. S. Snow. Nano Lett., 2010, 10, 3001.

    Article  CAS  PubMed  Google Scholar 

  6. S. D. Costa, J. E. Weis, O. Frank, Z. Bastl, and M. Kalbac. Carbon, 2015, 84, 347.

    Article  CAS  Google Scholar 

  7. M.–S. Park and Y.–S. Lee. J. Fluor. Chem., 2016, 182, 98.

    Article  CAS  Google Scholar 

  8. S. H. Cheng, K. Zou, F. Okino, H. R. Gutierrez, A. Gupta, N. Shen, P. C. Eklund, J. O. Sofo, and J. Zhu. Phys. Rev. B, 2010, 81, 205435.

    Article  CAS  Google Scholar 

  9. R. Stine, W.–K. Lee, K. E. J. Whitener, J. T. Robinson, and P. E. Sheehan. Nano Lett., 2013, 13, 4311.

    Article  CAS  PubMed  Google Scholar 

  10. X. Wang, Y. Dai, J. Gao, J. Huang, B. Li, C. Fan, J. Yang, and X. Liu. ACS Appl. Mater. Interfaces, 2013, 5(17), 8294.

    Article  CAS  PubMed  Google Scholar 

  11. N. A. Nebogatikova, I. V. Antonova, V. Y. Prinz, V. A. Volodin, D. A. Zatsepin, E. Z. Kurmaev, I. S. Zhidkov, and S. O. Cholakh. Nanotechnol. Russia, 2014, 9(1–2), 42.

    Google Scholar 

  12. W. H. Lee, S. J. Wuk, H. Chou, J. Lee, Y. Hao, Y. Wu, R. Piner, D. Akinwande, K. S. Kim, and R. S. Ruoff. Nano Lett., 2012, 12, 2374.

    Article  CAS  PubMed  Google Scholar 

  13. B. Zhou, X. Qian, M. Li, J. Ma, L. Liu, C. Hu, Z. Xu, and X. Jiao. J. Nanopart. Res., 2015, 17, 130.

    Article  CAS  Google Scholar 

  14. F. Withers, M. Dubois, and A. K. Savchenko. Phys. Rev. B, 2010, 82, 073403.

    Article  CAS  Google Scholar 

  15. M. Chen, H. Zhou, C. Qiu, H. Yang, F. Yu, and L. Sun. Nanotechnology, 2012, 23, 115706.

    Article  CAS  PubMed  Google Scholar 

  16. C. Shen, G. Huang, Y. Cheng, R. Cao, F. Ding, U. Schwingenschlogl, and Y. Mei. Nanoscale Res. Lett., 2012, 7, 268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. B. Bon, L. Valentini, R. Verdejo, G. J. L. Fierro, L. Peponi, M. A. Lopez–Manchado, and J. M. Kenny. Chem. Mater., 2009, 21, 3433.

    Article  CAS  Google Scholar 

  18. Y.–Y. Yu, B. H. Kang, Y. D. Lee, S.B. Lee, and B.–K. Ju. Appl. Surf. Sci., 2013, 287, 91.

    Article  CAS  Google Scholar 

  19. S. D. Sherpa, S. A. Paniagua, G. Levitin, S. R. Marder, M. D. Williams, and D. W. Hess. J. Vac. Sci. Technol. B, 2012, 30, 03D102.

    Article  CAS  Google Scholar 

  20. M. Baraket, S. G. Walton, E. H. Lock, J. T. Robinson, and F. K. Perkins. Appl. Phys. Lett., 2010, 96, 231501.

    Article  CAS  Google Scholar 

  21. Z. Ao, Q. Jiang, S. Li, H. Liu, M. F. Peeters, S. Li, and G. Wang. ACS Appl. Mater. Interfaces, 2015, 7(35), 19659.

    Article  CAS  PubMed  Google Scholar 

  22. W. S. Hummers and R. E. Offeman. J. Am. Chem. Soc., 1958, 80, 1339.

    Article  CAS  Google Scholar 

  23. E. P. Neustroev, G. N. Aleksandrov, and M. V. Nogovicyna. Vestnik SVFU, 2015, 50(6), 87.

    Google Scholar 

  24. V. V. Gulyaev, Yu. I. Dikarev, V. M. Rubinshtejn, S. M. Cvetkov, and E. N. Bormontov. Kondensirovannye Sredy i Mezhfaznye Granicy, 2010, 12(4), 360.

    CAS  Google Scholar 

  25. M. Kogoma and G. Turban. Plasma Chem. Plasma Proces., 1986, 6(4), 349.

    Article  CAS  Google Scholar 

  26. W. Feng, P. Long, Y. Feng, and Y. Li. Adv. Sci., 2016, 3, 1500413.

    Article  CAS  Google Scholar 

  27. P. Klar, E. Lidorikis, A. Eckmann, I. A. Verzhbitskiy, A. C. Ferrari, and C. Casiraghi. Phys. Rev. B, 2013, 87, 205435.

    Article  CAS  Google Scholar 

  28. L. G. Cancado, A. Jorio, E. H. MartinFerreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari. Nano Lett., 2011, 11, 3190.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Nikolaev.

Additional information

Original Russian Text © 2018 E. P. Neustroev, M. V. Nogovitsyna, B. D. Soloviev, I. I. Kurkina, D. V. Nikolaev.

Translated from Zhurnal Strukturnoi Khimii, Vol. 59, No. 4, pp. 827–833, May-June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neustroev, E.P., Nogovitsyna, M.V., Soloviev, B.D. et al. The Impact of SF6 Plasma on the Properties of Graphene Oxide. J Struct Chem 59, 793–798 (2018). https://doi.org/10.1134/S0022476618040078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618040078

Keywords

Navigation