Skip to main content
Log in

Jahn–Teller Effect in the [CuEn3]CrO4 Structure

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A change in the coordination of the copper atom in the crystal structure of [CuEn3]CrO4 (En is ethylenediamine) in studied in the range 150–300 K. According to the single crystal X-ray diffraction (XRD) data at 150 K, the single crystal has a complicated twining character based on the triclinic cell (a = 9.027(2) Å, b = 13.335(3) Å, c = 13.339(3) Å, α = 71.77(3)°, β = 70.53(3)°, γ = 70.42(3)°) composed of two crystallographically independent [CuEn3]2+ complex cations. The coordination of copper atoms is a distorted square bipyramid; four short Cu–N distances lie in the range 2.049-2.082 Å; two long ones are 2.415 Å and 2.470 Å. According to the differential scanning calorimetry (DSC) data, near 218 K there is a phase transition. The single crystal XRD experiment performed at 250 K (a = 15.6992(19) Å, c = 9.7573(13) Å, V = 2082.6(6) Å3, space group P\(\bar 3\)c1 (No. 165), Z = 6) shows that chromate anions are disordered over three positions about the с axis, and Cu–N distances are 2.120-2.177 Å. According to the DSC data, on further heating the structure undergoes yet another two alterations (260 K and 270 K) due to the disordering of oxygen atoms of chromate anions and the subsequent equalization of Cu–N distances. At 300 K in the structure (a = 9.0778(6) Å, c = 9.7715(5) Å, V = 697.4 Å3, space group P\(\bar 3\)c (No. 163), Z = 2) all Cu–N distances are 2.155 Å, and chromate anions are disordered over six positions about the с axis. A comparative crystal chemical analysis of the packing of the studied structures is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Gordon and R. K. Birdwhistell. J. Amer. Chem. Soc., 1959, 81, 3567–3569.

    Article  CAS  Google Scholar 

  2. I. Bertini and D. Gatteschi. Inorg. Nucl. Chem. Lett., 1972, 8,207.

    Article  CAS  Google Scholar 

  3. I. Bertini, D. Gatteschi, and A. Scozzafava. Inorg. Chim. Acta, 1974, 61, L17.

    Article  Google Scholar 

  4. I. Bertini, P. Dapporto, D. Gatteschi, and A. Scozzafava. J. Chem. Soc., Dalton Trans., 1979, 1409–1414.

    Google Scholar 

  5. M. Lutz. Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 2010, 66(11), m330–m335.

    Article  CAS  Google Scholar 

  6. I. Bertini, D. Gatteschi, and A. Scozzafava. Inorg. Chem., 1977, 66, 1973–1976.

    Article  Google Scholar 

  7. S. Smeets, P. Parois, H.-B. Burgi, and M. Lutz. Acta Crystallogr. Sect. B: Struct. Sci., 2011, 67, 53–62.

    Article  CAS  Google Scholar 

  8. N. V. Arkhipenko and S. M. Kiiko. Zh. Fiz. Khim., 2005, 79(2), 374–376.

    Google Scholar 

  9. A. M. A. Bennet, G. A. Foulds, D. A. Thornton, et al. Spectrochim. Acta, 1990, 46A(1), 13–22.

    Article  Google Scholar 

  10. W. Kraus and G. Nolze. J. Appl. Crystallogr., 1996, 29, 301/302.

    Article  CAS  Google Scholar 

  11. A. S. Sukhikh, S. P. Khranenko, and S. A. Gromilov. J. Struct. Chem., 2018, 59(2), 395–397.

    Article  CAS  Google Scholar 

  12. F. H. Allen. Acta Crystallogr., 2002, B58(3-1), 380–388.

    Article  CAS  Google Scholar 

  13. A. V. Panchenko, N. D. Tolstykh, and S. A. Gromilov. J. Struct. Chem., 2014, 55, Suppl.(1), S24–S29.

    Google Scholar 

  14. Bruker AXS Inc. APEX2 V2013.6-2, SAINT V8.32B and SADABS-2012/1. Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.

  15. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339–341.

    Article  CAS  Google Scholar 

  16. G. M. Sheldrick. Acta Crystallogr., 2015, A71, 3–8.

    Google Scholar 

  17. G. M. Sheldrick. Acta Crystallogr., 2015, C71, 3–8.

    Google Scholar 

  18. S. V. Borisov. J. Struct. Chem., 1986, 27(3), 486–488.

    Article  Google Scholar 

  19. E. A. Bykova, S. P. Khranenko, and S. A. Gromilov. J. Struct. Chem., 2012, 53(1), 138–144.

    Article  CAS  Google Scholar 

  20. S. P. Khranenko, E. A. Bykova, A. V. Alekseev, and S. A. Gromilov. J. Struct. Chem., 2012, 53(3), 514–520.

    Article  CAS  Google Scholar 

  21. N. V. Kuratieva, I. O. Tereshkin, S. P. Khranenko, and S. A. Gromilov. J. Struct. Chem., 2013, 54(6), 1133–1136.

    Article  CAS  Google Scholar 

  22. S. P. Khranenko, N. V. Kuratieva, and S. A. Gromilov. J. Struct. Chem., 2015, 56(2), 352–356.

    Article  CAS  Google Scholar 

  23. V. A. Afanas`eva, L. A. Glinskaya, D. A. Piryazev, and S. A. Gromilov. J. Struct. Chem., 2015, 56(4), 787–791.

    Article  CAS  Google Scholar 

  24. S. A. Gromilov, E. A. Bykova, and S. V. Borisov. Kristallografiya, 2011, 56(6), 1013–1018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Gromilov.

Additional information

Original Russian Text © 2018 A. S. Sukhikh, S. P. Khranenko, D. P. Pishchur, S. A. Gromilov.

Translated from Zhurnal Strukturnoi Khimii, Vol. 59, No. 3, pp. 679–686, March-April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhikh, A.S., Khranenko, S.P., Pishchur, D.P. et al. Jahn–Teller Effect in the [CuEn3]CrO4 Structure. J Struct Chem 59, 657–663 (2018). https://doi.org/10.1134/S0022476618030228

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618030228

Keywords

Navigation