Skip to main content
Log in

Molecular Modeling, Spectroscopic Investigations, and Computational Studies of DMSO solvated 7′-amino-1′,3′-dimethyl-2,2′,4′-trioxo-1′,2′,3′,4′,4a′,8a′-tetrahydrospiro[indoline-3,5′-pyrano[2,3-d]pyrimidine]-6′-carbonitrile

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A combined experimental and theoretical study is performed on DMSO solvated 7′-amino-1′,3′-dimethyl- 2,2′,4′-trioxo-1′,2′,3′,4′,4a′,8a′-tetrahydrospiro[indoline-3,5′-pyrano[2,3-d]pyrimidine]-6′-carbonitrile. The compound is studied by NMR, IR spectroscopy, and single crystal X-ray analysis. The crystal structure of the molecule is stabilized by intermolecular N–H…N, N–H…O, and C–H…π interactions. In the crystal, the molecules form hydrogen-bonded chains running along the b axis of the unit cell. In the present work, we have applied density functional theory (DFT) to explore the nonlinear properties of the molecule. The harmonic vibrational frequencies are calculated and compared with experimental FT-IR frequencies. The observed and calculated frequencies are found to be in good agreement. The calculated values of the HOMO-LUMO energy gap shows that a charge transfer occurs within the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Khafagy, A. H. F. A. El-Wahas, F. A. Eid, and A. M. El-Agrody, Farmaco, 57, 715 (2002).

    Article  CAS  Google Scholar 

  2. P. R. Sebahar and R. M. Williams, J. Am. Chem. Soc., 122, 5666 (2000).

    Article  CAS  Google Scholar 

  3. J. Ma and S. M. Hecht, Chem. Commun., 1190 (2004).

    Google Scholar 

  4. S. Edmondson, S. J. Danishefsky, L. Sepp-Lorenzinol, and N. Rosen, J. Am. Chem. Soc., 121, 2147 (1999).

    Article  CAS  Google Scholar 

  5. T.-H. Kang, K. Matsumoto, M. Tohda, Y. Murakami, H. Takayama, M. Kitajima, N. Aimi, and H. Watanabe, Eur. J. Pharmacol., 444, 39 (2002).

    Article  CAS  Google Scholar 

  6. F. M. Dean, Naturally Occurring Oxygen Ring Compounds, Butterworths, London (1963), p. 176.

    Google Scholar 

  7. A. Goel and V. J. Ram, Tetrahedron, 65, 7865 (2009).

    Article  CAS  Google Scholar 

  8. J. W. Hong, Q. R. Xiao, Y. Z. Yan, and H. Z. J. Zhan, J. Braz. Chem. Soc., 20, 1939 (2009).

    Article  Google Scholar 

  9. D. Saman, S. Reza, V. Majid, and R. M. Hamid, Chin. Chem. Lett., 23, 253 (2012).

    Article  Google Scholar 

  10. E. Hossein, H. Z. Gholam, S. Reza, and D. Saman, Heterocycl. Commun., 18, No. 2, 67 (2012).

    Google Scholar 

  11. K. Mogilaiah, B. H. Sharath, K. Vidya, and K. K. Shiva, Indian J. Chem. B, 49, 390 (2010).

    Google Scholar 

  12. X. S. Wang, G. S. Yang, and G. Zhao, Tetrahedron: Asymmetry, 19, 709 (2008).

    Article  CAS  Google Scholar 

  13. H. Itokawa, T. Mihar, and K. Takeya, Chem. Pharm. Bull., 31, 2353 (1983).

    Article  CAS  Google Scholar 

  14. A. G. Martinez and L. J. Marco, Bioorg. Med. Chem. Lett., 7, 3165 (1997).

    Article  Google Scholar 

  15. C. P. Dell and C. W. Smith, Chem. Abstr., 119, 139102d (1993).

    Google Scholar 

  16. G. Bianchi and A. Tava, Agric. Biol. Chem., 51, 2001 (1987).

    CAS  Google Scholar 

  17. F. Marec, I. Kollarova, and A. Jegorov, Planta Med., 67, 127 (2001).

    Article  CAS  Google Scholar 

  18. S. J. Gil, S. L. Dong, C. K. Dong, J. Yurngdong, K. S. Jong, H. L. Seung, and C. K. Youn, Eur. J. Pharmacol., 654, 226 (2011).

    Article  Google Scholar 

  19. N. Zhang, S. Ayral-Kaloustian, T. Nguyen, J. Afragola, R. Hernandez, J. Lucas, J. Gibbons, and C. J. Beyer, Med. Chem., 50, 319 (2007).

    Article  CAS  Google Scholar 

  20. L. Havlicek, K. Fuksova, V. Krystof, M. Orsag, B. Vojtesek, and M. Strnad, Bioorg. Med. Chem., 13, 5399 (2005).

    Article  CAS  Google Scholar 

  21. M. E. Fraley, W. F. Hoffman, and R. S. Rubino, Bioorg. Med. Chem. Lett., 12, 2767 (2002).

    Article  CAS  Google Scholar 

  22. Q. Chen, X. L. Zhu, L. L. Jiang, Z. M. Liu, and G. F. Yang, Eur. J. Med. Chem., 43, 595 (2008).

    Article  CAS  Google Scholar 

  23. U. Shigeko, T. Shinya, M. Takako, and O. Tomiichiro, Brain Res., 946, 298 (2002).

    Article  Google Scholar 

  24. G. Brahmachari and B. Banerjee, Asian J. Org. Chem., 5, 271 (2016).

    Article  CAS  Google Scholar 

  25. L. J. Farrugia, J. Appl. Crystallogr., 30, 565 (2012).

    Article  Google Scholar 

  26. A. L. Spek, Acta Crystallogr., D65, 148 (2009).

    Google Scholar 

  27. M. J. Nardelli, Appl. Crystallogr., 28, 659 (1995).

    Article  CAS  Google Scholar 

  28. K. Chinnakali, D. Sudha, M. Jayagobi, R. Raghunathan, and H.-K. Fun, Acta Crystallogr., E65, o2907 (2009).

    Google Scholar 

  29. L. Yan, Y.-L. Zhu, and Y.-J. Pan, Acta Crystallogr., E61, o1049 (2005).

    Google Scholar 

  30. F. H. Allen, O. Kennard, D. G. Watson, et al., J. Chem. Soc., Perkin Trans. 2, S1 (1987).

    Article  Google Scholar 

  31. L. Nerskov-Lauritsen, H. B. Burgi, P. Hofmann, and H. R. Schmidt, Helv. Chim. Acta, 68, 76 (1985).

    Article  Google Scholar 

  32. M. C. Etter, J. C. MacDonald, and J. Bernstein, Acta Crystallogr., B46, 256 (1990).

    Article  CAS  Google Scholar 

  33. J. Bernstein, R. E. Davis, L. Shimoni, and N. L. Chang, Angew. Chem. Int. Ed. Engl., 34, 1555 (1995).

    Article  CAS  Google Scholar 

  34. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, D. J. Fox, et al., Gaussian 09, revision A.02, Gaussian Inc., Wallingford (2009).

    Google Scholar 

  35. A. D. Becke, J. Chem. Phys., 98, 5648 (1993).

    Article  CAS  Google Scholar 

  36. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 1337, 785 (1988).

    Article  Google Scholar 

  37. R. Dennington, T. Keith, and J. Millam, Gauss View version 5.0, Semichem Inc., KS (2005).

    Google Scholar 

  38. A. P. Scott and L. Random, J. Phys. Chem., 100, 16502 (1996).

    Article  CAS  Google Scholar 

  39. M. H. Jamroz, Vibrational Energy Distribution Analysis, VEDA 4 Program, Warsaw, Poland (2004).

    Google Scholar 

  40. S. Mohan, N. Sundaraganesan, and J. Mink, Spectrochim. Acta A, 47, 1111 (1991).

    Article  Google Scholar 

  41. M. R. Silverstein, G. C. Basseler, and T. C. Morill, Spectrometric Identification of Oraganic Compounds, Wiley, New York (1981).

    Google Scholar 

  42. G. Socrates, Infrared and Raman Characteristic Group Frequencies, Tables and Charts, 3-ed., Wiley, Chichester (2001).

    Google Scholar 

  43. D. N. Sathyanarayana, Vibrational Spectroscopy Theory and Application, 2-ed., Narosa Publishing House, New Delhi (2011).

    Google Scholar 

  44. C. Castiglioni, M. Del Zoppo, P. Zuliani, and G. Zerbi, Synth. Met., 74, 171 (1995).

    Article  CAS  Google Scholar 

  45. P. Zuliani, M. Del Zoppo, C. Castiglioni, G. Zerbi, S. R. Marder, and J. W. Perry, Chem. Phys., 103, 9935 (1995).

    CAS  Google Scholar 

  46. D. A. Kleinman, Phys. Rev., 126, 1977 (1962).

    Article  CAS  Google Scholar 

  47. H. Alyar, Z. Kantarci, M. Bahat, and E. Kasap, J. Mol. Struct., 834, 516 (2007).

    Article  Google Scholar 

  48. K. Fukui, T. Yonezawa, and H. Shingu, J. Phys. Chem., 207, 22 (1952).

    Google Scholar 

  49. G. Zhang and C. B. Musgrave, J. Phys. Chem. A, 111, 1554 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Gupta.

Additional information

Original Russian Text © 2018 S. Sharma, G. Brahmachari, A. Kumar, N. Misra, R. Kant, V. K. Gupta.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 59, No. 1, pp. 237–246, January–February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Brahmachari, G., Kumar, A. et al. Molecular Modeling, Spectroscopic Investigations, and Computational Studies of DMSO solvated 7′-amino-1′,3′-dimethyl-2,2′,4′-trioxo-1′,2′,3′,4′,4a′,8a′-tetrahydrospiro[indoline-3,5′-pyrano[2,3-d]pyrimidine]-6′-carbonitrile. J Struct Chem 59, 235–244 (2018). https://doi.org/10.1134/S0022476618010389

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618010389

Keywords

Navigation