Skip to main content
Log in

Molecular Relaxation of Binary Systems LiNO3–LiClO4, NaNO3–NaNO2, K2CO3–K2SO4

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Molecular relaxation in binary systems LiNO3–LIClO4, NaNO3–NaNO2, and K2CO3–K2SO4 is studied using Raman spectroscopy. The relaxation time of ν1(A) vibrations for NO3 and CO32− anions is found to be shorter in LiNO3–LIClO4, NaNO3–NaNO2, K2CO3–K2SO4 than in LiNO3, NaNO3, K2CO3, respectively. Higher relaxation rate is explained by additional relaxation of excited vibrational states. This mechanism is associated with vibrational excitation of the second anion ( ClO4, NO2, SO42− ) and “production” of a lattice phonon. This relaxation mechanism is possible when the difference between the frequencies of these vibrations falls into the region of fairly high density of states of the phonon spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. K. Voronko, A. A. Sobol, and V. E. Shukshin, Phys. Solid State, 49, 1963 (2007).

    Article  CAS  Google Scholar 

  2. V. Rakov, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR, 27, 111 (1964).

    CAS  Google Scholar 

  3. K. A. Valiev and E. N. Ivanov, Sov. Phys.–Usp., 16, 1 (1973).

    Article  Google Scholar 

  4. V. E. Pogorelov, A. I. Lizengevich, I. I. Kondilenko, and G. P. Buyan, Sov. Phys.–Usp., 22, 270 (1979).

    Article  Google Scholar 

  5. S. A. Kirillov, in: Dynamic Properties of Molecules and Condensed Systems [in Russian], A. N. Lazarev (ed.), Nauka, Leningrad (1988), pp. 190–227.

  6. D. W. Oxtoby, J. Chem. Phys., 70, 2605 (1978).

    Article  Google Scholar 

  7. K. A. Valiev, Sov. Phys. JETP, 13, 1287 (1961).

    Google Scholar 

  8. K. A. Valiev, Opt. Spektrosk., 11, No. 4, 465 (1961).

    CAS  Google Scholar 

  9. K. Sarka and A. Kirillov, Ukr. Fiz. Zh., 26, No. 7, 1118 (1981).

    CAS  Google Scholar 

  10. M. A. Ivanov, L. B. Kvashina, and M. A. Krivoglaz, Sov. Phys. Solid State, 7, 1652 (1965).

    Google Scholar 

  11. M. M. Gafurov, and A. R. Aliev, Rasplavy, No. 2, 41 (2000).

    Google Scholar 

  12. R. Aliev and M. M. Gafurov, Russ. J. Phys. Chem. A, 75, 418 (2001).

    Google Scholar 

  13. R. Aliev, M. M. Gafurov, and I. R. Akhmedov, Chem. Phys. Lett., 359, 262 (2002).

    Article  CAS  Google Scholar 

  14. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, M. M. Gafurov, K. Sh. Rabadanov, and A. M. Amirov, Phys. Solid State, 59, 752 (2017).

    Article  CAS  Google Scholar 

  15. E. Yu. Tonkov, High-Pressure Phase Transformations, Gordon and Breach, London (1992).

    Google Scholar 

  16. V. N. Belomestnykh and A. A. Botaki, Sov. Phys. Solid State, 32, 1643 (1990).

    Google Scholar 

  17. Chemical Encyclopedia [in Russian], vol. 2, Sovetskaya Entsyklopediya, Moscow (1990), pp. 288, 289, 608; vol. 3, Sovetskaya Entsyklopediya, Moscow (1992), p. 183.

  18. D. V. Korabel’nikov and Yu. N. Zhuravlev, Phys. Solid State, 55, 1765 (2013).

    Article  Google Scholar 

  19. V. D. Prisyazhny and V. I. Snezhkov, Ukr. Fiz. Zh., 47, No. 3, 230 (1981).

    Google Scholar 

  20. V. N. Belomestnykh and A. A. Botaki, Sov. Phys. Solid State, 34, 137 (1992).

    Google Scholar 

  21. V. S. Gorelik, A. Yu. Pyatyshev, and A. S. Krylov, Phys. Solid State, 58, 170 (2016).

    Article  CAS  Google Scholar 

  22. M. H. Brooker and G. N. Papatheodorou, in: Advances in Molten Salt Chemistry, G. Mamantov (ed.), vol. 5, Elsevier, Amsterdam (1983), pp. 26–184.

    CAS  Google Scholar 

  23. K. W. F. Kohlrausch, Raman Specktren, Becker, Leipzig (1943).

    Google Scholar 

  24. L. M. Sverdlov, M. A. Kovner, and E. P. Krainov, Vibrational Spectra of Polyatomic Molecules [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  25. C. J. Pouchert (ed.), The Aldrich Library of Infrared Spectra, 2-nd ed., Aldrich Chemical Company (1978).

    Google Scholar 

  26. V. N. Belomestnykh and E. P. Tesleva, Izv. Tomsk. Politekh. Univ., 307, No. 6, 11 (2004).

    Google Scholar 

  27. D. V. Korabel′nikov and Yu. N. Zhuravlev, Phys. Solid State, 58, 1166 (2016).

    Article  Google Scholar 

  28. O. V. Golovko, Electronic Structure, Chemical Bonding, Physical and Chemical Properties of Alkali Metal Sulphates, Candidate’s Thesis, Phys.-Math. Sci., Kemerovo State University, Kemerovo (2009).

    Google Scholar 

  29. D. W. James and W. H. Leong, J. Chem. Phys., 49, 5089 (1968).

    Article  CAS  Google Scholar 

  30. W. H. Leong and D. W. James, Aust. J. Chem., 22, 499 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Aliev.

Additional information

Original Russian Text © 2018 A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, A. M. Amirov.

Translated from Zhurnal Strukturnoi Khimii, Vol. 59, No. 1, pp. 85–91, January–February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliev, A.R., Akhmedov, I.R., Kakagasanov, M.G. et al. Molecular Relaxation of Binary Systems LiNO3–LiClO4, NaNO3–NaNO2, K2CO3–K2SO4. J Struct Chem 59, 80–86 (2018). https://doi.org/10.1134/S0022476618010122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618010122

Keywords

Navigation