Skip to main content
Log in

Structure of a Na+ cation hydration shell on heating in a planar nanopore

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Resistance to heating above the boiling point of water of the molecular structure of a single-charged sodium cation hydration shell growing under the conditions of a model planar nanopore with a width of 5 Å is studied by computer simulation. Monte Carlo calculations of spatial correlation functions are performed in a detailed model with regard to many-body interactions between the ion and water molecules. The system demonstrates an increased resistance to thermal fluctuations along the pore plane and a decreased one in the transverse direction. The heating is accompanied by an enhanced coating effect of molecules around the ion and a diminished effect of extruding the ion out of its own hydration shell. The orientational molecular order due to strong spatial anisotropy inside the nanopore is much more stable than the hydrogen bonds between the molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Elimelech and W. A. Phillip, Science, 333, No. 6043, 712 (2011).

    Article  CAS  Google Scholar 

  2. M. A. Shannon, P. W. Bohn, M. Elimelech, et al., Nature, 452, No. 7185, 301 (2008).

    Article  CAS  Google Scholar 

  3. D. E. De Vos, M. Dams, B. F. Sels, et al., Chem. Rev., 102, No. 10, 3615 (2002).

    Article  Google Scholar 

  4. A. Corma, S. Iborra, and A. Velty, Chem. Rev., 107, No. 6, 2411 (2007).

    Article  CAS  Google Scholar 

  5. W. H. Thompson, Ann. Rev. Phys. Chem., 62, 599 (2011).

    Article  CAS  Google Scholar 

  6. S. N. Novikov, S. P. Timoshenkov, V. S. Minaev, et al., Zh. Fiz. Khim., 90, No. 9, 1396 (2016).

    Google Scholar 

  7. E. Yamamoto, T. Akimoto, Y. Hirano, et al., Phys. Rev. E, 87, 052715 (2013).

    Article  Google Scholar 

  8. B. L. de Groot and H. Grubmuller, Science, 294, No. 5550, 2353 (2001).

    Article  Google Scholar 

  9. E. Tajkhorshid, P. Nollert, M. O. Jensen, et al., Science, 296, No. 5567, 525 (2002).

    Article  CAS  Google Scholar 

  10. D. Vanzo, D. Bratko, and A. Luzar, J. Chem. Phys., 140, 074710 (2014).

    Article  Google Scholar 

  11. S. V. Shevkunov, Dokl. Phys., 58, No. 4, 121 (2013).

    Article  CAS  Google Scholar 

  12. S. V. Shevkunov, Colloid J., 75, No. 4, 444 (2013).

    Article  CAS  Google Scholar 

  13. S. V. Shevkunov, Russ. J. Gen. Chem., 72, No. 5, 685 (2002).

    Article  CAS  Google Scholar 

  14. S. V. Shevkunov, Russ. J. Gen. Chem., 74, No. 9, 1305 (2004).

    Article  CAS  Google Scholar 

  15. S. V. Shevkunov, Russ. J. Phys. Chem., 78, No. 10, 1590 (2004).

    Google Scholar 

  16. J. L. Kou, X. Y. Zhou, H. J. Lu, et al., Nanoscale, 6, No. 3, 1865 (2014).

    Article  CAS  Google Scholar 

  17. S. J. Zhao, J. M. Xue, and W. J. Kang, Chem. Phys., 139, 114702 (2013).

    Google Scholar 

  18. X. J. Gong, J. C. Li, K. Xu, et al., J. Am. Chem. Soc., 132, No. 6, 1873 (2010).

    Article  CAS  Google Scholar 

  19. K. Sint, B. Wang, and P. Kral, J. Am. Chem. Soc., 130, No. 49, 16448 (2008).

    Article  CAS  Google Scholar 

  20. R. Garcia-Fandino and M. S. P. Sansom, Proc. Nat. Acad. Sci. USA, 109, No. 18, 6939 (2012).

    Article  CAS  Google Scholar 

  21. R. Bloomfield and V. Bloomfield, J. Phys. Chem., 100, No. 23, 9977 (1996).

    Article  Google Scholar 

  22. B. I. Shklovskii, Phys. Rev. E, 60, No. 5, 5802 (1999).

    Article  CAS  Google Scholar 

  23. R. R. Netz, Eur. Phys. J. E., 5, No. 5, 557 (2001).

    Article  CAS  Google Scholar 

  24. L. Samaj and E. Trizac, Phys. Rev. Lett., 106, No. 7, 078301 (2011).

    Article  Google Scholar 

  25. E. F. Mikhailov, S. Y. Mironova, M. V. Makarova, et al., Izvestiya. Atmospheric and Oceanic Physics, 51, No. 4, 423 (2015).

    Article  Google Scholar 

  26. T. I. Ryshkevich, G. N. Mironov, S. Y. Mironova, et al., Izvestiya. Atmospheric and Oceanic Physics, 51, No. 5, 512 (2015).

    Article  Google Scholar 

  27. R. A. Bakhanova, V. I. Kiselev, E. I. Kuku, et al., Physics of Clouds and Intense Actions [in Russian], Proc. of the Ukrainian Regional Scientific Research Institute of Hydrometeorology, Gidrometeoizdat, Moscow (1991), Iss. 242, pp.102.

    Google Scholar 

  28. M. Ya. Vodopyanov, G. N. Permyakov, and E. V. Churbanov, Proc. of the All-Russ. Conf. “Active Effects on Hydrometeorological Processes” [in Russian], Nal’chik, October 22-25, 1991, Gidrometeoizdat, St. Petersburg (1995), 2, pp.166.

    Google Scholar 

  29. S. V. Shevkunov, J. Exp. Theor. Phys., 107, No. 6, 965 (2008).

    Article  CAS  Google Scholar 

  30. S. V. Shevkunov, Russ. J. Phys. Chem., 79, No. 10, 1653 (2005).

    CAS  Google Scholar 

  31. S. V. Shevkunov, Colloid J., 67, No. 4, 497 (2005).

    Article  CAS  Google Scholar 

  32. S. V. Shevkunov, Colloid J., 76, No. 4, 490 (2014).

    Article  CAS  Google Scholar 

  33. S. V. Shevkunov, Russ. J. Electrochem., 50, No. 12, 1118 (2014).

    Article  CAS  Google Scholar 

  34. S. V. Shevkunov, Russ. J. Phys. Chem. A, 88, No. 10, 1744 (2014).

    Article  CAS  Google Scholar 

  35. S. V. Shevkunov, Colloid J., 78, No. 1, 121 (2016).

    Article  CAS  Google Scholar 

  36. S. V. Shevkunov, Russ. J. Phys. Chem. A, 90, No. 5, 1015 (2016).

    Article  CAS  Google Scholar 

  37. S. V. Shevkunov, Colloid J., 78, No. 2, 242 (2016).

    Article  CAS  Google Scholar 

  38. S. V. Shevkunov, High Temp., 53, No. 2, 259 (2015).

    Article  CAS  Google Scholar 

  39. T. L. Hill, Statistical Mechanics, McGraw-Hill, New York (1956).

    Google Scholar 

  40. S. V. Shevkunov, Colloid J., 72, No. 1, 93 (2010).

    Article  CAS  Google Scholar 

  41. S. V. Shevkunov, Russ. J. Electrochem., 49, No. 3, 228 (2013).

    Article  CAS  Google Scholar 

  42. I. Dzidic and P. Kebarle, J. Phys. Chem., 74, No. 7, 1466 (1970).

    Article  CAS  Google Scholar 

  43. L. X. Dang and D. E. Smith, J. Chem. Phys., 99, No. 9, 6950 (1993).

    Article  CAS  Google Scholar 

  44. D. H. Herce, L. Perera, T. A. Darden, et al., J. Chem. Phys., 122, 024513 (1-10) (2005).

    Article  Google Scholar 

  45. S. V. Shevkunov, J. Adv. Chem. Phys., 2, No. 1, 109 (2003).

    Google Scholar 

  46. S. V. Shevkunov, Colloid J., 64, No. 2, 243 (2002).

    Article  CAS  Google Scholar 

  47. S. V. Shevkunov, Russ. J. Phys. Chem., 76, No. 4, 499 (2002).

    Google Scholar 

  48. S. V. Shevkunov, Colloid J., 73, No. 2, 275 (2011).

    Article  CAS  Google Scholar 

  49. S. V. Shevkunov, Russ. J. Phys. Chem. A, 83, No. 6, 972 (2009).

    Article  CAS  Google Scholar 

  50. S. V. Shevkunov, Russ. J. Phys. Chem. A, 88, No. 2, 313 (2014).

    Article  CAS  Google Scholar 

  51. S. V. Shevkunov, J. Struct. Chem., 57, No. 1, 104 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shevkunov.

Additional information

Original Russian Text © 2017 S. V. Shevkunov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevkunov, S.V. Structure of a Na+ cation hydration shell on heating in a planar nanopore. J Struct Chem 58, 1368–1376 (2017). https://doi.org/10.1134/S0022476617070137

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617070137

Keywords

Navigation