Skip to main content
Log in

Experimental and theoretical studies of diethyl 2-(ter-butylimino)-2,5-dihydro-5-oxo-1-phenyl-1H-pyrrole-3,4-dicarboxylate using DFT calculations

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

In this study, diethyl 2-(ter-butylimino)-2,5-dihydro-5-oxo-1-phenyl-1H-pyrrole-3,4-dicarboxylate compound 1 is synthesized and characterized by FT-IR, 1H and 13C NMR spectroscopy. The DFT calculations are carried out for compound 1 by B3LYP and PBE1PBE methods. The bond lengths, bond angles, dihedral angles, charge density on the atoms of 1 are calculated. A comparison of the DFT calculations indicate that the B3LYP method with the 6-311G++(d,p) basis set can give accurate results. The 13C NMR and 1H NMR chemical shifts of 1 are calculated and compared with the available experimental data on the molecules. The nuclear independent chemical shift (NICS) calculations are utilized for the pyrrole ring in compound 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Swinbourne, H. J. Hunt, and G. Klinkert, Adv. Heterocycl. Chem., 23, 103 (1987).

    Article  Google Scholar 

  2. J. Zhu and H. Bienaym'e (eds.), Multicomponent Reactions, Wiley, VCH, Weinheim (2005).

    Google Scholar 

  3. R. V. A. Orru and M. Greef, Synthesis, 1471–1499 (2003).

    Google Scholar 

  4. A. Ramazani, N. Shajari, A. Mahyari, and Y. Ahmadi, Mol. Divers., 15, 521–527 (2011).

    Article  CAS  Google Scholar 

  5. F. ZeinaliNasrabadi, A. Ramazani, and Y. Ahmadi, Mol. Divers., 15, 791–798 (2011).

    Article  Google Scholar 

  6. A. Ramazani, F. ZeinaliNasrabadi, A. MashhadiMalekZadeh, and Y. Ahmadi, Monatsh. Chem., 142, 625–630 (2011).

    Article  CAS  Google Scholar 

  7. A. Ramazani and A. R. Kazemizadeh, Curr. Org. Chem., 15, 3986–4020 (2011).

    Article  CAS  Google Scholar 

  8. I. Ugi, B. Werner, and A. Dömling, Molecules, 8, 53–66 (2003).

    Article  CAS  Google Scholar 

  9. D. Astruc, F. Lu, and J. R. Aranzaes, Angew. Chem. Int. Ed., 44, 7852–7872 (2005).

    Article  CAS  Google Scholar 

  10. I. P. Beletskaya and A. V. Cheprakov, Chem. Rev., 100, 3009–3066 (2000).

    Article  CAS  Google Scholar 

  11. Z. Asadi, M. B. Asnaashariisfahani, E. Vessally, and M. D. Esrafili, Spectrochim. Acta A, 140, 585–599 (2015).

    Article  CAS  Google Scholar 

  12. L. N. Lewis, Chem. Rev., 93, 2693–2730 (1993).

    Article  CAS  Google Scholar 

  13. S. Banerjee and S. Santra, Tetrahedron Lett., 50, 2037–2040 (2009).

    Article  CAS  Google Scholar 

  14. B. Stefane and S. Polanc, Tetrahedron, 63, 10902–10913 (2007).

    Article  CAS  Google Scholar 

  15. V. Gotor, R. Liz, and A. Testera, Tetrahedron, 60, 607–618 (2004).

    Article  CAS  Google Scholar 

  16. M. Sibi, J. Christensen, S. Kim, M. Eggen, C. Stessman, and L. Oien, Tetrahedron Lett., 36, 6209–6212 (1995).

    Article  CAS  Google Scholar 

  17. A. Ramazani, A. Azizian, M. Bandpey, and N. Noshiranzadeh, Phosphorus, Sulfur Silicon Relat. Elem., 181, 2731–2734 (2006).

    Article  CAS  Google Scholar 

  18. I. Yavari and A. Ramazani, Phosphorus, Sulfur Silicon Relat. Elem., 130, 73–77 (1997).

    Article  CAS  Google Scholar 

  19. A. Ramazani and A. Bodaghi, Tetrahedron Lett., 41, 567/568 (2000).

    Article  CAS  Google Scholar 

  20. A. Ramazani, Y. Ahmadi, M. Rouhani, N. Shajari, and A. Souldozi, Heteroat. Chem., 21, 368–372 (2011).

    Article  Google Scholar 

  21. K. Khandan-Barani, M. Maghsoodlou, T. NourallahHazeri, S. M. Habibi-Khorasani, and S. S. Sajadikhah, ARKIVOC, XI, 22–28 (2011).

    Google Scholar 

  22. M. J. Frisch, et al., Gaussian 03, Revision 0.02, Gaussian, Inc., Wallingford CT (2004).

    Google Scholar 

  23. R. Ditchfield, Mol. Phys., 27, 789 (2008).

    Article  Google Scholar 

  24. R. I. I. Dennington, T. Keith, and J. Millam, GaussView Version 4.1.2, Semichem Inc., Shawnee Mission, KS (2007).

    Google Scholar 

  25. E. Bulatov, T. Chulkova, and M. Haukka, Acta Crystallogr. E, 70, o162 (2014).

    Article  CAS  Google Scholar 

  26. M. Anary-Abbasinejad, M. Mirhosseini, and M. Tabatabaee, Acta Crystallogr. E. Struct., 17, o1101 (2010).

    Article  Google Scholar 

  27. M. Akkurt, S. K. Mohamed, M. A. Elremaily, F. Santoyo-Gonzalez, and M. R. Albayati, Acta Crystallogr. E, 69, o1761–2 (2013).

    Article  Google Scholar 

  28. V. K. Rastogi, M. A. Palafox, R. P. Tanwar, and L. Mittal, Spectrochim. Acta A, 58, 1987–2004 (2002).

    Article  CAS  Google Scholar 

  29. R. M. Silverstein, G. C. Basseler, and T. C. Morill, Spectrometric Identification of Organic Compounds, 4th ed., John Wiley and Sons., QD272, S6 S55, New York (1981).

    Google Scholar 

  30. E. Vessally, M. Nikoorazm, and A. Ramazani, Chines J. Inorg. Chem., 124, No. 4, 631–635 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Vessally.

Additional information

Original Russian Text © 2017 S. Yahyaei, E. Vessally, M. Hashemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahyaei, S., Vessally, E. & Hashemi, M. Experimental and theoretical studies of diethyl 2-(ter-butylimino)-2,5-dihydro-5-oxo-1-phenyl-1H-pyrrole-3,4-dicarboxylate using DFT calculations. J Struct Chem 58, 1341–1349 (2017). https://doi.org/10.1134/S0022476617070101

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617070101

Keywords

Navigation