Journal of Structural Chemistry

, Volume 58, Issue 6, pp 1236–1244 | Cite as

Study of the ZnS x Se1–x@Al2O3 nanostructures by X-ray diffraction and EXAFS spectroscopy

  • A. I. ChukavinEmail author
  • R. G. Valeev
  • Ya. V. Zubavichus
  • A. L. Trigub
  • A. N. Beltyukov


Nanocomposite systems based on ternary ZnS x Se1–x semiconductor compounds with different compositions (x = 0, 0.3, 0.5, 0.7, 1) in dielectric matrices of nanoporous anodic aluminium oxide (AAO) are synthesized by high vacuum thermal evaporation of a zinc sulfide and selenide powder mixture. The effect of the atomic concentration of solid solutions and the structural parameters of the AAO template matrix on the crystal structure of the synthesized nanocomposites and the local atomic environment of Zn and Se atoms is investigated.


ZnSxSe1–x nanostructures EXAFS X-ray diffraction nanoporous anodic aluminium oxide thermal evaporation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. M. Gavrishchuk, D. V. Savin, and V. B. Ikonnikov, Appl. Phys., 1, 62–65 (2010).Google Scholar
  2. 2.
    H. X. Chuo, T. Y. Wang, and W. G. Zhang, J. Alloys Compd., 606, 231–235 (2014).CrossRefGoogle Scholar
  3. 3.
    M. Wang, G. T. Fei, Y. G. Zhang, M. G. Kong, and L. D. Zhang, Adv. Mater., 19, 4491–4494 (2007).CrossRefGoogle Scholar
  4. 4.
    D. Wu, Y. Chang, Zh. Lou, T. Xu, J. Xu, Zh. Shi, Y. Tian, and X. Li, J. Alloys Compd., 708, 623–627 (2017).CrossRefGoogle Scholar
  5. 5.
    Y. Liang, H. Xu, and S. Hark, Cryst. Growth Des., 10, 4206–4210 (2010).CrossRefGoogle Scholar
  6. 6.
    S. Park, H. Kim, C. Jin, and C. Lee, Curr. Appl. Phys., 12, 499–503 (2012).CrossRefGoogle Scholar
  7. 7.
    J. P. Lu, H. W. Liu, C. Sun, M. R. Zheng, M. Nripan, G. M. Subodh, X. H. Zhang, and C. H. Sow, Nanoscale, 4, 976–981 (2012).CrossRefGoogle Scholar
  8. 8.
    H. Y. Xu, Y. Liang, Z. Liu, X. T. Zhang, and S. Hark, Adv. Mater., 20, 3294–3297 (2008).CrossRefGoogle Scholar
  9. 9.
    Y.-J. Choi, S. J. Kwon, K.-J. Choi, D.-W. Kim, and J.-G. Park, J. Korean Phys. Soc., 54, No. 4, 1650–1654 (2009).CrossRefGoogle Scholar
  10. 10.
    M. Chang, X. Li Cao, X.-J. Xu, and L. Zhang, Phys. Lett. A, 372, 273–276 (2008).CrossRefGoogle Scholar
  11. 11.
    M. Chahrour Khaled, M. Ahmed Naser, M. R. Hashim, G. Elfadill Nezar, M. Al-Diabat Ahmad, and M. Bououdina, J. Phys. Chem. Solids, 87, 1–8 (2015).CrossRefGoogle Scholar
  12. 12.
    R. G. Valeev, A. I. Chukavin, V. V. Mukhgalin, V. V. Kriventsov, E. A. Romanov, and B. V. Robouch, Mater. Res. Express, 2, 025006 (2015).CrossRefGoogle Scholar
  13. 13.
    H. Masuda and K. Fukuda, Science, 268, No. 5216, 1466–1468 (1995).CrossRefGoogle Scholar
  14. 14.
    M. Newville, J. Synchrotron Radiat., 8, No. 2, 96–100 (2001).CrossRefGoogle Scholar
  15. 15.
    B. Ravel and M. Newville, J. Synchrotron Radiat., 12, No. 4, 537–541 (2005).CrossRefGoogle Scholar
  16. 16.
    A. V. Chichagov, et al., Kristallographiya, 35, No. 3, 610–616 (1990).Google Scholar
  17. 17.
    A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies [in Russian], FIZMATLIT, Moscow (2005), p. 169.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. I. Chukavin
    • 1
    Email author
  • R. G. Valeev
    • 1
  • Ya. V. Zubavichus
    • 2
  • A. L. Trigub
    • 1
    • 2
  • A. N. Beltyukov
    • 1
  1. 1.Institute of Physics and Technology, Ural BranchRussian Academy of SciencesIzhevskRussia
  2. 2.National Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations