Journal of Structural Chemistry

, Volume 58, Issue 6, pp 1226–1235 | Cite as

Local atomic structure of mono- and binuclear metal complexes based on 3-formylpyrone and 3-formylcoumarin bis-azomethines

  • V. G. Vlasenko
  • L. D. Popov
  • I. N. Shcherbakov
  • V. V. Lukov
  • S. I. Levchenkov
  • I. V. Pankov
  • Ya. V. Zubavichus
  • A. L. Trigub


A series of Cu, Ni, and Mn complexes based on formylpyrone and formylcoumarin azomethynes with 1,3- diaminepropanol-2. The analysis of XANES and EXAFS spectra of the Cu, Ni, and Mn complexes, which were processed by both Fourier and wavelet transforms, enables the determination of local atomic structural parameters and the unambiguous evidence of the formation of both dinuclear and mononuclear structures of these coordination compounds. The possibility of forming binuclear compounds is shown to depend mainly on the nature of the bridging ligand and be independent of the type of the polydentate azomethyne ligand: pyrone or coumarin. The obtained structural results are well consistent with the magnetochemical data for the complexes.


azomethynes metal complexes X-ray absorption spectroscopy wavelet analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Mishra, R. K. Mishra, and M. D. Pandey, Coord. Chem., 56, 1840 (2011).Google Scholar
  2. 2.
    S. Sarkar and K. Dey, Spectrochim. Acta PA, 77, 740 (2010).CrossRefGoogle Scholar
  3. 3.
    K. Cheng, Q.-Z. Zheng, and H.-L. Zhu, Inorg. Chem. Commun., 12, 1116 (2009).CrossRefGoogle Scholar
  4. 4.
    S. Absule, D. Barve, D. Chen, et al., J. Med. Chem., 49, 7242 (2006).CrossRefGoogle Scholar
  5. 5.
    D. Barve, F. Ahmed, S. Absule, et al., J. Med. Chem., 49, 3800 (2006).CrossRefGoogle Scholar
  6. 6.
    A. V. Metelitsa, A. S. Burlov, S. O. Bezuglyi, et al., Russ. J. Coord. Chem., 32, 858 (2006).CrossRefGoogle Scholar
  7. 7.
    T. Chattopadhyay, M. Mukherjee, and K. S. Banu, J. Coord. Chem., 62, 967 (2009).CrossRefGoogle Scholar
  8. 8.
    K. H. Chang, C. C. Huang, Y. H. Lui, et al., Dalton Trans., 1731 (2004).Google Scholar
  9. 9.
    Comprehensive Coordination Chemistry II, V.9, M. D. Ward (ed.), Elsevier, Amsterdam (2004).Google Scholar
  10. 10.
    E. Dunach, A. P. Esteves, M. J. Medeiros, et al., J. Electroanal. Chem., 566, 39 (2004).CrossRefGoogle Scholar
  11. 11.
    V. Mirkhani, S. Tangestaninejad, M. Mognadam, et al., Bioorg. Med. Chem., 12, 903 (2004).CrossRefGoogle Scholar
  12. 12.
    A. S. Burlov, S. A. Nikolaevskii, A. S. Bogomyakov, et al., Russ. J. Coord. Chem., 35, No. 7, 486 (2009).CrossRefGoogle Scholar
  13. 13.
    A. S. Burlov, V. N. Ikorskii, S. A. Nikolaevskii, et al., Russ. J. Inorg. Chem., 53, No. 10, 1566 (2008).CrossRefGoogle Scholar
  14. 14.
    A. S. Burlov, A. I. Uraev, V. N. Ikorskii, et al., Russ. J. Gen. Chem., 78, No. 6, 1230 (2008).CrossRefGoogle Scholar
  15. 15.
    V. A. Kogan, V. V. Lukov, and I. N. Shcherbakov, Russ. J. Coord. Chem., 36, 401 (2010).CrossRefGoogle Scholar
  16. 16.
    V. V. Lukov, V. A. Kogan, S. I. Levchenkov, et al., Russ. J. Coord. Chem., 41, 1 (2015).CrossRefGoogle Scholar
  17. 17.
    P. Chaundhuri, Coord. Chem. Rev., 243, 143 (2003).CrossRefGoogle Scholar
  18. 18.
    S. I. Levchenkov, I. N. Shcherbakov, L. D. Popov, et al., J. Struct. Chem., 56, No. 1, 113 (2015).CrossRefGoogle Scholar
  19. 19.
    A. D. Garnovskii, V. G. Vasil'chenko, and D. A. Garnovskii, Ross. Khim. Zh., 53, 100 (2009).Google Scholar
  20. 20.
    Y. Shimazaki, T. Yajima, F. Tani, et al., J. Am. Chem. Soc., 129, 2559 (2007).CrossRefGoogle Scholar
  21. 21.
    Y. Shimazaki, N. Arai, T. Dunn, et al., Dalton Trans., 40, 2469 (2011).CrossRefGoogle Scholar
  22. 22.
    G. G. Chigarenko, A. G. Ponomarenko, A. S. Burlov, et al., Patent RF, No. 2119533, Bull. Izobr., No. 27 (1998).Google Scholar
  23. 23.
    A. G. Ponomarenko, G. G. Chigarenko, A. S. Burlov, et al., Patent RF, No. 2339683, Bull. Izobr., No. 33 (2008).Google Scholar
  24. 24.
    O. V. Kotova, S. V. Eliseeva, A. S. Averjushkin, et al., Russ. Chem. Bull., 57, 1880 (2008).CrossRefGoogle Scholar
  25. 25.
    I. E. Mikhailov, G. A. Dushenko, D. A. Starikov, et al., Vestnik YuNTs RAN, 6, 32 (2010).Google Scholar
  26. 26.
    T. N. Sorrell, Tetrahedron, 45, 3 (1989).CrossRefGoogle Scholar
  27. 27.
    V. G. Vlasenko, A. I. Uraev, A. D. Garnovskii, et al., Bull. Russ. Acad. Sci.: Phys., 72, 468 (2008).CrossRefGoogle Scholar
  28. 28.
    A. L. Nivorozhkin, A. I. Uraev, G. I. Bondarenko, et al., Chem. Commun., 1711 (1997).Google Scholar
  29. 29.
    E. I. Solomon, M. J. Baldvin, and M. D. Lavery, Chem. Rev., 92, 521 (1992).CrossRefGoogle Scholar
  30. 30.
    Biomimetic Inorganic Chemistry, R. H. Holm and E. I. Solomon (eds.), Chem. Rev., 104, 347 (2004).Google Scholar
  31. 31.
    J. Lewinski, J. Zachara, I. Justyniak, and M. Dranka, Coord. Chem. Rev., 249, 1185 (2006).CrossRefGoogle Scholar
  32. 32.
    A. Nabei, T. Kuroda-Sowa, T. Okubo, et al., Inorg. Chem. Acta, 361, 3489 (2008).CrossRefGoogle Scholar
  33. 33.
    T. M. Ross, M. Neville, D. S. Innes, et al., Dalton Trans., 39, 149 (2010).CrossRefGoogle Scholar
  34. 34.
    L. D. Popov, Y. P. Tupolova, V. V. Lukov, et al., Inorg Chem. Acta, 362, 1673 (2009).CrossRefGoogle Scholar
  35. 35.
    Y. P. Tupolova, V. A. Kogan, V. V. Lukov, et al., Trans. Met. Chem., 32, 656 (2007).CrossRefGoogle Scholar
  36. 36.
    L. D. Popov, S. I. Levchenkov, I. N. Shcherbakov, et al., Inorg. Chem. Commun., 17, 1 (2012).CrossRefGoogle Scholar
  37. 37.
    I. N. Shcherbakov, S. I. Levchenkov, Y. P. Tupolova, et al., Eur. J. Inorg. Chem., 28, 5033 (2013).Google Scholar
  38. 38.
    M. Grazul and E. Budzisz, Coord. Chem. Rev., 253, 2588 (2009).CrossRefGoogle Scholar
  39. 39.
    A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus, Nucl. Instr. Meth. Phys. Res. A, 603, 95 (2009).CrossRefGoogle Scholar
  40. 40.
    D. I. Kochubei, Yu. A. Babanov, K. I. Zamaraev, R. V. Vedrinskii, V. L. Kraizman, G. N. Kulipanov, L. N. Mazalov, A. N. Skrinskii, V. I. Fedorov, B. Yu. Khel'mer, and A. T. Shuvaev, X-ray Emission Spectroscopy Technique to Study the Structure of Amorphous Bodies: EXAFS Spectroscopy [in Russian], Nauka, Novosibirsk (1988).Google Scholar
  41. 41.
    M. Newville, J. Synchrotron Radiat., No. 8, 96 (2001).CrossRefGoogle Scholar
  42. 42.
    S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller, Phys. Rev., B52, 2995 (1995).CrossRefGoogle Scholar
  43. 43.
    E. A. Stern, Phys. Rev. B, 48, 489825–489827 (1993).CrossRefGoogle Scholar
  44. 44.
    G. Bunker, Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy, Cambridge University Press (2010).CrossRefGoogle Scholar
  45. 45.
    H. Funke, A. C. Scheinhost, and M. Chukalina, Phys. Rev. B, 71, 094110 (2005).CrossRefGoogle Scholar
  46. 46.
    H. Funke, M. Chukalina, and A. C. Scheinost, J. Synchrotron Radiat., 14, 426 (2007).CrossRefGoogle Scholar
  47. 47.
    A. S. Burlov, V. G. Vlasenko, Y. V. Koshchienko, et al., Russ. J. Coord. Chem., 42, 267 (2016).CrossRefGoogle Scholar
  48. 48.
    A. S. Burlov, V. G. Vlasenko, A. D. Garnovskii, et al., J. Struct. Chem., 56, No. 3, 504 (2015).CrossRefGoogle Scholar
  49. 49.
    I. N. Shcherbakov, S. I. Levchenkov, Yu. P. Tupolova, et al., Eur. J. Inorg. Chem., 13, 5033 (2013).Google Scholar
  50. 50.
    O. Kahn, Molecular Magnetism, VCH Publishers, New York (1993).Google Scholar
  51. 51.
    B. Bleaney and K. D. Bowers, Proc. R. Soc. London. A, 214, No. 1119, 451 (1952).CrossRefGoogle Scholar
  52. 52.
    V. V. Lukov, I. N. Shcherbakov, S. I. Levchenkov, et al., Russ. J. Coord. Chem., 43, No. 1, 1 (2017).CrossRefGoogle Scholar
  53. 53.
    Yu. V. Rakitin and V. T. Kalinnikov, Modern Magnetochemistry [in Russian], Nauka, St. Petersburg (1994).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. G. Vlasenko
    • 1
  • L. D. Popov
    • 2
  • I. N. Shcherbakov
    • 2
  • V. V. Lukov
    • 2
  • S. I. Levchenkov
    • 2
    • 3
  • I. V. Pankov
    • 2
  • Ya. V. Zubavichus
    • 4
  • A. L. Trigub
    • 4
  1. 1.Scientific Research Institute of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Southern Federal UniversityRostov-on-DonRussia
  3. 3.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  4. 4.National Research Center, Kurchatov InstituteMoscowRussia

Personalised recommendations