Skip to main content
Log in

Weak hydrogen bonds in adsorption of nonrigid molecules on graphitized thermal carbon black

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

On the example of aromatic alcohols, amines and thiols, weak hydrogen bonds ОН•••π, NH•••π, SН•••π, CН•••O, CН•••N in the adsorption of nonrigid molecules on graphitized thermal carbon black (GTCB) are discussed in the review. The main theoretical approaches used for the description of the nature and the determination of the hydrogen bond energy are analyzed and formation criteria are defined. By B3LYP/aug-cc-pVDZ, B3LYP/aug-cc-pVTZ methods and the molecular statistical theory of adsorption the structural-energy parameters of conformers stable in the gas phase and the adsorbed state are determined. It is shown that for the correspondence of the experimental and calculated thermodynamic characteristics of adsorption of nonrigid molecules it is principally important to determine the exact structure of stable conformers is of The contribution of weak hydrogen bonds to the stabilization of conformer is confirmed by the non-covalent interaction method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Dashevskii, Conformational analysis of organic molecules [in Russian], Khimiya, Moscow (1982).

    Google Scholar 

  2. L. A. Gribov and S. P. Mushtakova, Quantum Chemistry [in Russian], Gardariki, Moscow (1999).

    Google Scholar 

  3. V. A. Terent`ev, Thermodynamics of the Donor-Acceptor Bond [in Russian], Saratov Univ., Saratov (1981).

    Google Scholar 

  4. V. G. Tsirel`son, Chemical Bond and Intermolecular Interactions. Lectures on quantum chemistry [in Russian], Mendeleev Russian Chemical Technological University, Moscow (2004).

    Google Scholar 

  5. E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, and D. J. Nesbitt, Pure Appl. Chem., 83, No. 8, 1619 (2011).

    CAS  Google Scholar 

  6. G. Gilli and P. Gilli, The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory, Oxford University Press, UK (2009).

    Book  Google Scholar 

  7. S. Scheiner, Hydrogen Bonding: A Theoretical Perspective, Oxford University Press, USA (1997).

    Google Scholar 

  8. N. F. Stepanov, Soros. Obr. Zhurnal., 7, No. 2, 28 (2001).

    Google Scholar 

  9. G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures, Springer-Verlag, Germany (1991).

    Book  Google Scholar 

  10. G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press, USA (1999).

    Google Scholar 

  11. G. Buemi and F. Zuccarello, THEOCHEM, 581, 71 (2002).

    Article  CAS  Google Scholar 

  12. V. V. Varfolomeeva, Zhurn. Obshch. Khimii., 77, No. 11, 1835 (2007).

    Google Scholar 

  13. P. Sanz, M. Yanez, and O. Mo, J. Phys. Chem. A, 106, No. 18, 4661 (2002).

    Article  CAS  Google Scholar 

  14. S.-Y. Sheu, E. W. Schlag, H. L. Selzle, and D.-Y. Yang, J. Phys. Chem. B, 113, No. 15, 5318 (2009).

    Article  CAS  Google Scholar 

  15. T. Steiner, Angew. Chem. Int. Ed., 41, 48 (2002).

    Article  CAS  Google Scholar 

  16. O. Takahashi, Y. Kohno, and M. Nishio, Chem. Rev., 110, No. 10, 6049 (2010).

    Article  CAS  Google Scholar 

  17. S. Scheiner, Phys. Chem. Chem. Phys., 13, 13860 (2011).

    Article  CAS  Google Scholar 

  18. W. Hujo and S. Grimme, Phys. Chem. Chem. Phys., 13, 13942 (2011).

    Article  CAS  Google Scholar 

  19. T. S. Thakur, M. T. Kirchner, D. Blaser, R. Boese, and G. R. Desiraju, Phys. Chem. Chem. Phys., 13, 14076 (2011).

    Article  CAS  Google Scholar 

  20. M. Goswamiz and E. Arunan, Phys. Chem. Chem. Phys., 13, 14153 (2011).

    Article  CAS  Google Scholar 

  21. X. Liu and Y. Xu, Phys. Chem. Chem. Phys., 13, 14235 (2011).

    Article  CAS  Google Scholar 

  22. M. Nishio, Phys. Chem. Chem. Phys., 13, 13873 (2011).

    Article  CAS  Google Scholar 

  23. M. Schmies, A. Patzer, M. Fujii, and O. Dopfer, Phys. Chem. Chem. Phys., 13, 13926 (2011).

    Article  CAS  Google Scholar 

  24. M. G. Chernobrovkin, Determination of amine acids and their optical isomers in the form of o-phthalic and dansyl derivatives by high-performance liquid chromatography [in Russian], Diss. … Cand. Chem. Sc., Moscow State University, Moscow (2006).

    Google Scholar 

  25. D. N. Izraelashvili, Intermolecular and surface forces [in Russian], Nauchnyi Mir, Moscow (2011).

    Google Scholar 

  26. A. K. Rappe and E. R. Bernstein, J. Phys. Chem. A, 104, No. 26, 6117 (2000).

    Article  CAS  Google Scholar 

  27. M. D. Patey and C. E. H. Dessent, J. Phys. Chem. A, 106, No. 18, 4623 (2002).

    Article  CAS  Google Scholar 

  28. K. Shin-ya, H. Sugeta, S. Shin, Y. Hamada, Y. Katsumoto, and K. Ohno, J. Phys. Chem. A, 111, No. 35, 8598 (2007).

    Article  CAS  Google Scholar 

  29. P. Butz, R. T. Kroemer, N. A. Macleod, E. G. Robertson, and J. P. Simons, J. Phys. Chem. A, 105, No. 6, 1050 (2001).

    Article  CAS  Google Scholar 

  30. T. I. Oprea, J. Comput. Aided Mol. Des., 14, 251 (2000).

    Article  CAS  Google Scholar 

  31. H.-D. Höltje, W. Sippl, D. Rognan, and G. Folkers, Molecular Modeling Basic: Principles and Applications, 2nd Edition, Wiley-VCH, Heidelberg (2003).

    Google Scholar 

  32. P. D. Godfrey, L. D. Hatherley, and R. D. Brown, J. Am. Chem. Soc., 117, No. 31, 8204 (1995).

    Article  CAS  Google Scholar 

  33. J. Yao, H. S. Im, M. Foltin, and E. R. Bernstein, J. Phys. Chem. A, 104, No. 26, 6197 (2000).

    Article  CAS  Google Scholar 

  34. V. V. Varfolomeeva and A. V. Terentev, Zhurn. Fiz. Khimii., 84, No. 9, 1744 (2010).

    Google Scholar 

  35. V. V. Varfolomeeva and A. V. Terentev, In: Carbon Black: Production, Properties and Uses, I. J. Sanders and T. L. Peeten (eds.), Nova Science Publishers, Inc., USA (2011), pp. 93–114.

    Google Scholar 

  36. V. V. Varfolomeeva and A. V. Terentev, Fizikokhimiya Poverkhnosti i zashchita materialov, 50, No. 6, 583 (2014).

    Google Scholar 

  37. D. V. Korol`kov and G. A. Skorobogatov, Theoretical Chemistry [in Russian], St. Petersburg State Univ., St. Petersburg (2005).

    Google Scholar 

  38. A. W. Baker and A. T. Shulgin, J. Am. Chem. Soc., 80, No. 20, 5358 (1958).

    Article  CAS  Google Scholar 

  39. M. Oki and H. Iwamura, Bull. Chem. Soc. Jpn., 32, No. 10, 1135 (1959).

    Article  CAS  Google Scholar 

  40. I. Rozas, I. Alkorta, and J. Elguero, J. Phys. Chem. A, 101, No. 49, 9457 (1997).

    Article  CAS  Google Scholar 

  41. E. Arunan, G. R. Desiraju, R. A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D. C. Clary, R. H. Crabtree, J. J. Dannenberg, P. Hobza, H. G. Kjaergaard, A. C. Legon, B. Mennucci, and D. J. Nesbitt, Pure Appl. Chem., 83, No. 8, 1637 (2011).

    CAS  Google Scholar 

  42. Minutes of a meeting on February 2, Zhur. Russ. Fiz.-Khim. Ob., 27, sec. 1 (1895), p. 61.

  43. Life, Work and Inventions [in Russian] (Jubilee collection dedicated to 55th anniversary of the scientific activity of Honorary Academician M.A. Il`inskii), A. E. Porai-Koshits (ed.), AN SSSR, Moscow (1938).

  44. A. Werner, Z. Anorg. Chem., 9, No. 1, 382 (1895).

    Article  CAS  Google Scholar 

  45. M. A. Il`inskii, Zhur. Russ. Fiz.-Khim. Ob., 29, sec. 1 (1897), p. 346.

    Google Scholar 

  46. W. Nernst, Z. Phys. Chem., 8, No. 1, 110 (1891).

    Article  Google Scholar 

  47. K. Auwers, Z. Phys. Chem., 12, 689 (1893).

    Article  Google Scholar 

  48. K. Auwers, Z. Phys. Chem., 15, 33 (1894).

    Article  CAS  Google Scholar 

  49. K. Auwers, Z. Phys. Chem., 18, 595 (1895).

    Article  CAS  Google Scholar 

  50. K. Auwers, Ber. deutsch. chem. Ges., 28, 2878 (1895).

    Article  CAS  Google Scholar 

  51. K. Auwers and K. J. Orton, Z. Phys. Chem., 21, 337 (1896).

    Article  CAS  Google Scholar 

  52. N. D. Sokolov, Uspekhi Fiz. Nauk, 57, No. 2, 205 (1955).

    Article  CAS  Google Scholar 

  53. A. Werner, Justus Liebigs Ann. Chem., 322, No. 3, 261 (1902).

    Article  CAS  Google Scholar 

  54. T. S. Moore and T. F. Winmill, J. Chem. Soc., Trans., 101, 1635 (1912).

    Article  CAS  Google Scholar 

  55. W. M. Latimer and W. H. Rodebush, J. Am. Chem. Soc., 42, No. 7, 1419 (1920).

    Article  CAS  Google Scholar 

  56. Y. Marechal, The Hydrogen Bond and the Water Molecule: The Physics and Chemistry of Water, Aqueous and Bio Media, Elsevier, Netherlands (2007).

    Google Scholar 

  57. G. N. Lewis, Valence and the Structure of Atoms and Molecules, Chemical Catalog Company, USA (1923).

    Google Scholar 

  58. E. S. Kryachko, in: Hydrogen Bonding, New Insights, S. J. Grabowski (ed.), Springer, The Netherlands (2006), pp. 293–336.

    Book  Google Scholar 

  59. Yu. I. Solov`ev, D. N. Trifonov, and A. N. Shamine, History of Chemistry [in Russian], Prosveshchenie, Moscow (1984).

    Google Scholar 

  60. W. Heitler and F. London, Z. Phys. A: Hadrons Nucl., 44, Nos. 6/7, 455 (1927).

    Article  CAS  Google Scholar 

  61. F. London, Z. Phys. A: Hadrons Nucl., 46, Nos. 7/8, 455 (1928).

    Article  CAS  Google Scholar 

  62. L. Pauling, Proc. Nat. Acad. Sci., 14, No. 4, 359 (1928).

    Article  CAS  Google Scholar 

  63. L. Pauling, J. Am. Chem. Soc., 53, No. 4, 1367 (1931).

    Article  CAS  Google Scholar 

  64. L. Pauling, The Nature of the Chemical Bond, Cornell University Press (1940).

    Google Scholar 

  65. Ε. Moelwуn-Hughes, J. Chem. Soc., 1243 (1938).

    Google Scholar 

  66. H. Harms, Z. Phys. Chem. B, 43, 257 (1939).

    Google Scholar 

  67. Μ. Davies, Trans. Faraday Soc., 36, 333 (1940).

    Article  CAS  Google Scholar 

  68. G. Briegleb, Z. Phys. Chem. B, 51, 9 (1941).

    Google Scholar 

  69. J. A. Pople, Proc. R. Soc. A, 205, No. 1081, 163 (1951).

    Article  CAS  Google Scholar 

  70. E. Bauer and Μ. Μagat, J. Phys. Radium, 9, 319 (1938).

    Article  CAS  Google Scholar 

  71. N. Coggeshall, J. Chem. Phys., 18, 978 (1950).

    Article  CAS  Google Scholar 

  72. S. J. Grabowski and J. Leszczynski, in: Hydrogen Bonding–New Insights, S. J. Grabowski (ed.), Springer, The Netherlands (2006), pp. 487–512.

    Book  Google Scholar 

  73. S. S. Batsanov, Structural Chemistry. Facts and Dependences [in Russian], Dialog-MGU, Moscow (2000).

    Google Scholar 

  74. V. V. Varfolomeeva, Zhurn. Obshch. Khimii, 81, No. 9, 1473 (2011).

    Google Scholar 

  75. N. D. Sokolov, Dokl. AN, 58. 611 (1947).

    CAS  Google Scholar 

  76. N. D. Sokolov, Zh. Eksp. i Teor. Fiz., 23, 315 (1952).

    CAS  Google Scholar 

  77. P. A. Kollman and L. C. Allen, Theor. Chem. Acc.: Theor, Comput., Model, 18, No. 4, 399 (1970).

    Article  CAS  Google Scholar 

  78. M. Dreyfus and A. A. Pullman, Theor. Chem. Acc.: Theor, Comput., Model, 19, No. 1, 20 (1970).

    Article  CAS  Google Scholar 

  79. K. Morokuma, J. Chem. Phys., 55, No. 3, 1236 (1971).

    Article  CAS  Google Scholar 

  80. C. A. Coulson, Research (London), 10, 149 (1957).

    CAS  Google Scholar 

  81. H. Umeyama and K. Morokuma, J. Am. Chem. Soc., 99, No. 5, 1316 (1977).

    Article  CAS  Google Scholar 

  82. J.-H. Lii and N. L. Allinger, J. Phys. Chem. A, 112, No. 46, 11903 (2008).

    Article  CAS  Google Scholar 

  83. K. Morokuma and J. R. Winick, J. Chem. Phys., 52, No. 3, 1301 (1970).

    Article  CAS  Google Scholar 

  84. C. A. Coulson and U. Danielsson, Arkiv för fysik, 8, No. 24, 239 (1954).

    CAS  Google Scholar 

  85. C. A. Coulson and U. Danielsson, Arkiv för fysik, 8, No. 24, 245 (1954).

    CAS  Google Scholar 

  86. M. Jablonski, A. Kaczmarek, and A. J. Sadlej, J. Phys. Chem. A, 110, No. 37, 10890 (2006).

    Article  CAS  Google Scholar 

  87. C. A. Coulson, Valence, 2nd.ed., Oxford University Press (1961).

    Google Scholar 

  88. E. Arunan, Definitions of a Hydrogen Bond, Indian Institute of Science, India (2005).

    Google Scholar 

  89. W. Gordy and S. C. Stanford, J. Chem. Phys., 8, No. 2, 170 (1940).

    Article  CAS  Google Scholar 

  90. L. P. Hammett, J. Chem. Educ., 17, No. 3, 131 (1940).

    Article  CAS  Google Scholar 

  91. B. C. Curran, J. Am. Chem. Soc., 67, 1835 (1945).

    Article  CAS  Google Scholar 

  92. A. S. Dneprovskii and T. I. Temnikova, Theoretical Principles of Organic Chemistry [in Russian], Khimiya, Leningrad (1991).

    Google Scholar 

  93. G. Buemi, in: Hydrogen Bonding–New Insights, S. J. Grabowski (ed.), Springer, The Netherlands (2006), pp. 51–107.

    Book  Google Scholar 

  94. G. C. Pimentel and A. L. McClellan, The Hydrogen Bond, W. H. Freeman and Co., San Francisco and London (1960).

    Google Scholar 

  95. P. M. Tolstoi, Determination of the Proton Position in Strong Hydrogen Bonds from Isotopic Effects in 13C NMR Spectra in Solutions [in Russian], Diss. … Cand. Phys.-Math. Sc., St. Peterburg State Univ., St. Peterburg (2004).

    Google Scholar 

  96. B. J. Miller, J. R. Lane, and H. G. Kjaergaard, Phys. Chem. Chem. Phys., 13, 14183 (2011).

    Article  CAS  Google Scholar 

  97. V. V. Varfolomeeva and A. V. Terentev, Phys. Chem. Chem. Phys., 17, 24282 (2015).

    Article  CAS  Google Scholar 

  98. E. N. Baker and R. E. Hubbard, Prog. Biophys. Mol. Biol., 44, No. 2, 97 (1984).

    Article  CAS  Google Scholar 

  99. C. H. Langley and N. L. Allinger, J. Phys. Chem. A, 107, No. 26, 5208 (2003).

    Article  CAS  Google Scholar 

  100. F. Fabiola, R. Bertram, A. Korostelev, and M. S. Chapman, Protein Sci., 11, No. 6, 1415 (2002).

    Article  CAS  Google Scholar 

  101. R. Parthasarathi and V. Subramanian, in: Hydrogen Bonding–New Insights, S. J. Grabowski (ed.), Springer, Dordrecht (2006), pp. 1–50.

    Book  Google Scholar 

  102. J. J. Novoa, F. Mota, and E. D′Oria, In: Hydrogen Bonding–New Insights, S. J. Grabowski (ed.), Springer, Dordrecht (2006), pp. 193–244.

    Book  Google Scholar 

  103. N. S. Golubev, G. S. Denisov, and V. M. Shraiber, Hydrogen Bond [in Russian], N. D. Sokolov (ed.), Nauka, Moscow (1981), pp. 212–254.

    Google Scholar 

  104. J. A. Dickinson, M. R. Hockridge, R. T. Kroemer, E. G. Robertson, J. P. Simons, J. McCombie, and M. Walker, J. Am. Chem. Soc., 120, No. 11, 2622 (1998).

    Article  CAS  Google Scholar 

  105. A. V. Vashchenko and A. V. Afonin, J. Struct. Chem., 55, No. 4, 636–643 (2014).

    Article  CAS  Google Scholar 

  106. A. Kovacs, A. Szabo, and I. Hargittai, Acc. Chem. Res., 35, No. 10, 887 (2002).

    Article  CAS  Google Scholar 

  107. G. L. Carlson and W. G. Fateley, J. Phys. Chem., 77, No. 9, 1157 (1973).

    Article  CAS  Google Scholar 

  108. I. M. Skvortsov and S. A. Kolesnikov, Zhurn. Fiz. Khimii, 47, No. 4, 785 (1973).

    CAS  Google Scholar 

  109. G. S. Denisov, M. I. Sheikh-Zade, and M. V. Eskina, Zhurn. Strukt. Khimii, 27, No. 6, 1049 (1977).

    CAS  Google Scholar 

  110. P. von R. Schleyer, C. Wintner, D. S. Trifan, and R. Backsai, Tetrahedron Lett., 1, No. 14, 1 (1959).

    Article  Google Scholar 

  111. P. J. Krueger and H. D. Mettee, Tetrahedron Lett., 7, 15, 1587 (1966).

    Article  Google Scholar 

  112. A. W. Baker and D. E. Bublitz, Spectrochim. Acta, 22, No. 10, 1787 (1966).

    Article  CAS  Google Scholar 

  113. H. H. Kirchner and W. Richter, Z. Phys. Chem., 81, Nos. 5/6, 274 (1972).

    Article  CAS  Google Scholar 

  114. R. M. Badger and S. H. Bauer, J. Phys. Chem., 5, No. 11, 839 (1937).

    Article  CAS  Google Scholar 

  115. M. D. Joesten and R. S. Drago, J. Am. Chem. Soc., 84, No. 20, 3817 (1962).

    Article  CAS  Google Scholar 

  116. T. D. Epley and R. S. Drago, J. Am. Chem. Soc., 89, No. 23, 5770 (1967).

    Article  CAS  Google Scholar 

  117. K. F. Purcell, J. A. Stikeleather, and S. D. Brunk, J. Am. Chem. Soc., 91, No. 15, 4019 (1969).

    Article  CAS  Google Scholar 

  118. A. D. Sherry and K. F. Purcell, J. Phys. Chem., 74, No. 19, 3535 (1970).

    Article  CAS  Google Scholar 

  119. A. V. Iogansen and B. V. Rassadin, J. Appl. Spectrosc., 11, No. 5, 1318 (1969).

    Article  Google Scholar 

  120. A. V. Iogansen, Hydrogen Bond [in Russian], N. D. Sokolov (ed.), Nauka, Moscow (1981), pp. 112–155.

    Google Scholar 

  121. V. G. Tsirel`son, Quantum Chemistry. Molecules, molecular systems, and solids [in Russian], BINOM. Laboratoriya Znanii, Moscow (2010).

    Google Scholar 

  122. S. G. Estatio, P. C. do Couto, B. J. C. Cabral, M. E. M. da Piedade, and J. A. M. Simoes, J. Phys. Chem. A, 108, No. 49, 10834 (2004).

    Article  CAS  Google Scholar 

  123. S. J. Grabowski, J. Phys. Chem. A, 105, No. 47, 10739 (2001).

    Article  CAS  Google Scholar 

  124. S. Wojtulewski and S. J. Grabowski, Chem. Phys. Lett., 378, Nos. 3/4, 388 (2003).

    Article  CAS  Google Scholar 

  125. K. Ya. Burshtein and A. N. Isaev, Zhurn. Strukt. Khimii, 27, No. 3, 8 (1986).

    CAS  Google Scholar 

  126. N. U. Zhanpeisov, A. G. Pel`menshchikov, and G. M. Zhidomirov, Zhurn. Strukt. Khimii, 28, No. 1, 1–5 (1987).

    Google Scholar 

  127. A. A. Voityuk and A. A. Bliznyuk, Zhurn. Strukt. Khimii, 28, No. 1, 8 (1987).

    CAS  Google Scholar 

  128. A. V. Shalabai, Intramolecular hydrogen bond in organic compounds with a planar quasi-ring: a quantum chemical study [in Russian], Diss.... Cand. Chem. Sc., Saratov State Univ., Saratov (2005).

    Google Scholar 

  129. H. J. R. Weintraub and A. J. Hopfinger, J. Theor. Biol., 41, No. 1, 53 (1973).

    Article  CAS  Google Scholar 

  130. N. L. Allinger, J. Am. Chem. Soc., 99, No. 25, 8127 (1977).

    Article  CAS  Google Scholar 

  131. N. L. Allinger, R. A. Kok, and M. R. Imam, J. Comput. Chem., 9, No. 6, 591 (1988).

    Article  CAS  Google Scholar 

  132. N. L. Allinger, Y. H. Yuh, and J.-H. Lii, J. Am. Chem. Soc., 111, No. 23, 8551 (1989).

    Article  CAS  Google Scholar 

  133. J.-H. Lii and N. L. Allinger, J. Phys. Org. Chem., 7, No. 11, 591 (1994).

    Article  CAS  Google Scholar 

  134. N. Mohan and C. H. Suresh, J. Phys. Chem. A, 118, No. 9, 1697 (2014).

    Article  CAS  Google Scholar 

  135. B. Jeziorski, R. Moszynski, and K. Szalewicz, Chem. Rev., 94, No. 7, 1887 (1994).

    Article  CAS  Google Scholar 

  136. K. Szalewicz, WIREs. Comput. Mol. Sci., 2, No. 2, 254 (2012).

    Article  CAS  Google Scholar 

  137. K. E. Riley, Jr. C. L. Ford, and K. Demouchet, Chem. Phys. Lett., 621, 165 (2015).

    Article  CAS  Google Scholar 

  138. E. V. Bartashevich, Structural organization and quantitative descriptors of physicochemical properties of compounds with halogen bonds from the electron density distribution data [in Russian], Diss. … Doc. Chem. Sc., South Ural State Univ., Chelyabinsk (2015).

    Google Scholar 

  139. R. F. W. Bader, Chem. Rev., 91, No. 5, 893 (1991).

    Article  CAS  Google Scholar 

  140. R. F. W. Bader, Atoms in molecules. A Quantum Theory, Oxford University Press, Oxford (1990).

    Google Scholar 

  141. L. Senthilkumar, T. K. Ghanty, S. K. Ghosh, and P. Kolandaivel, J. Phys. Chem. A, 110, No. 46, 12623 (2006).

    Article  CAS  Google Scholar 

  142. A. Shahi and E. Arunan, Phys. Chem. Chem. Phys., 16, 22935 (2014).

    Article  CAS  Google Scholar 

  143. M. A. Blanco, A. M. Pendas, and E. Francisco, J. Chem. Theory Comput., 1, No. 6, 1096 (2005).

    Article  CAS  Google Scholar 

  144. A. M. Pendas, M. A. Blanco, and E. Francisco, J. Comput. Chem., 28, No. 1, 161 (2007).

    Article  CAS  Google Scholar 

  145. M. García-Revilla, E. Francisco, A. Costales, and A. M. Pendas, J. Phys. Chem. A, 116, No. 4, 1237 (2012).

    Article  CAS  Google Scholar 

  146. E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A. J. Cohen, and W. Yang, J. Am. Chem. Soc., 132, No. 18, 6498 (2010).

    Article  CAS  Google Scholar 

  147. J. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan, and W. Yang, J. Chem. Theory Comput., 7, No. 3, 625 (2011).

    Article  CAS  Google Scholar 

  148. A. Otero-de-la-Roza, E. R. Johnson, and J. Contreras-Garcia, Phys. Chem. Chem. Phys., 14, 12165 (2012).

    Article  CAS  Google Scholar 

  149. E. R. Johnson and A. Otero-de-la-Roza, J. Chem. Theory Comput., 8, No. 12, 5124 (2012).

    Article  CAS  Google Scholar 

  150. G. Saleh, C. Gatti, and L. L. Presti, Comp. Theor. Chem., 1053, 53 (2015).

    Article  CAS  Google Scholar 

  151. A. V. Kiselev, Intermolecular interactions in adsorption and chromatography [in Russian], Vysshaia Shkola, Moscow (1986).

    Google Scholar 

  152. N. N. Avgul, A. V. Kiselev, and D. P. Poshkus, Adsorption of gases and vapor on homogeneous surfaces [in Russian], Khimiya, Moscow (1975).

    Google Scholar 

  153. A. K. Buryak, P. B. Dallakyan, and A. V. Kiselev, Dokl. AN SSSR, 282, No. 2, 350 (1985).

    CAS  Google Scholar 

  154. V. V. Varfolomeeva, A. V. Terentev, and A. K. Buryak, Zhurn. Fiz. Khimii, 82, No. 6, 1033 (2008).

    Google Scholar 

  155. R. F. McGuire, F. A. Momany, and H. A. Scheraga, J. Phys. Chem., 76, No. 3, 375 (1972).

    Article  CAS  Google Scholar 

  156. M. S. Bobyleva, L. A. Dement`eva, A. V. Kiselev, and N. S. Kulikov, Dokl. AN SSSR, 283, No. 6, 1390 (1985).

    CAS  Google Scholar 

  157. A. K. Buryak, Uspekhi Khimii, 71, No. 8, 788 (2002).

    Google Scholar 

  158. S. N. Yashkin, D. A. Svetlov, O. V. Novoselova, and E. A. Yashkina, Izv. AN. Ser. Khim., No. 12, 2422 (2008).

    Google Scholar 

  159. A. V. Kiselev, A. V. Iogansen, K. I. Sakodynskii, V. M. Sakharov, Ya. I. Yashin, A. P. Karnaukhov, N. E. Buyanova, and G. A. Kurkchi, Physicochemical application of gas chromatography [in Russian], Khimiya, Moscow (1973).

    Google Scholar 

  160. A. V. Terent′ev, V. V. Varfolomeeva, and A. K. Buryak, Russ. J. Phys. Chem. A, 83, No. 13, 2331 (2009).

    Article  CAS  Google Scholar 

  161. V. V. Varfolomeeva, A. V. Terentev, and A. K. Buryak, Zhurn. Fiz. Khimii, 83, No. 4, 655 (2009).

    Google Scholar 

  162. J. J. Fox and A. E. Martin, Trans. Faraday Soc., 36, 897 (1940).

    Article  CAS  Google Scholar 

  163. A. M. Buswell, W. H. Rodebush, and R. McL. Whitney, J. Am. Chem. Soc., 69, No. 4, 770 (1947).

    Article  CAS  Google Scholar 

  164. P. von R. Schleyer, D. S. Trifan, and R. Bacskai, J. Am. Chem. Soc., 80, No. 24, 6691 (1958).

    Article  Google Scholar 

  165. M. Oki and H. Iwamura, Bull. Chem. Soc. Jpn., 32, No. 9, 950 (1959).

    Article  CAS  Google Scholar 

  166. I. D. Campbell, G. Eglington, and R. A. Raphael, J. Chem. Soc. B: Phys. Org., 338 (1968).

    Google Scholar 

  167. A. E. Lutskii, V. A. Granzhan, Ya. A. Shuster, and P. M. Zaitsev, J. Appl. Spectroscop., 11, No. 5, 1387 (1969).

    Article  Google Scholar 

  168. R. J. Abraham and J. M. Bakke, Tetrahedron., 34, No. 19, 2947 (1978).

    Article  CAS  Google Scholar 

  169. T. Visser and J. H. Van der Maas, Spectrochim. Acta, Part A, 42, No. 5, 599 (1986).

    Article  Google Scholar 

  170. V. V. Varfolomeeva and A. V. Terentev, Zhurn. Obshch. Khimii, 68, No. 12, 1999 (1998).

    Google Scholar 

  171. M. Martin, R. Carbo, C. Petrongolo, and J. Tomasi, J. Am. Chem. Soc., 97, No. 6, 1338 (1975).

    Article  CAS  Google Scholar 

  172. S. Sun and E. R. Bernstein, J. Am. Chem. Soc., 118, No. 21, 5086 (1996).

    Article  CAS  Google Scholar 

  173. M. Mons, E. G. Robertson, L. C. Snoek, and J. P. Simons, Chem. Phys. Lett., 310, Nos. 5/6, 423 (1999).

    Article  CAS  Google Scholar 

  174. P. D. Godfrey, R. N. Jorissen, and R. D. Brown, J. Phys. Chem. A, 103, No. 38, 7621 (1999).

    Article  CAS  Google Scholar 

  175. K. L. Mardis, B. J. Brune, P. Vishwanath, B. Giorgis, G. F. Payne, and M. K. Gilson, J. Phys. Chem. B, 104, No. 19, 4735 (2000).

    Article  CAS  Google Scholar 

  176. R. Wienkauf, F. Lehrer, E. W. Schlag, A. Metsala, Faraday Discuss., 115, 363 (2000).

    Article  Google Scholar 

  177. J. C. Lopez, V. Cortijo, S. Blanco, and J. L. Alonso, Phys. Chem. Chem. Phys., 9, No. 32, 4521 (2007).

    Article  CAS  Google Scholar 

  178. M. Xie, Y. Qi, and Y. Hu, J. Phys. Chem. A, 115, No. 14, 3060 (2011).

    Article  CAS  Google Scholar 

  179. I. M. Goldman and R. O. Crisler, J. Org. Chem., 23, No. 5, 751 (1958).

    Article  CAS  Google Scholar 

  180. S. L. Spassov, M. F. Simeonov, and E. W. Randall, J. Mol. Struct., 77, Nos. 3/4, 289 (1981).

    Article  Google Scholar 

  181. D. E. Martin, E. G. Robertson, C. D. Thompson, and R. J. S. Morrison, J. Chem. Phys., 128, No. 16, 164301–1 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Varfolomeeva.

Additional information

Translated from Zhurnal Strukturnoi Khimii, Vol. 58, No. 3, pp. 586-613, March-April, 2017.

Original Russian Text © 2017 V. V. Varfolomeeva, A. V. Terentev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varfolomeeva, V.V., Terentev, A.V. Weak hydrogen bonds in adsorption of nonrigid molecules on graphitized thermal carbon black. J Struct Chem 58, 558–584 (2017). https://doi.org/10.1134/S0022476617030180

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617030180

Keywords

Navigation