Journal of Structural Chemistry

, Volume 58, Issue 3, pp 508–518 | Cite as

On the structure of copper(II) coordination compounds with L-histidine

  • V. T. Panyushkin
  • I. N. Shcherbakov
  • V. A. Volynkin
  • S. N. Bolotin
  • N. N. Bukov
  • T. V. Shvydko
  • L. Kh. Dzhabrailova
  • M. Kh. Shamsutdinova


Quantum chemical calculations are performed for the spatial and electron structure of complex compounds of L-histidine and its ionized forms with copper(II) for a variety of compositions within the density functional theory (DFT) using the B3LYP functional and 6-311G(d) basis. The solvent (water) is considered within the PCM approximation. EPR spectroscopy is used to study the equilibrium in the copper(II)–L-histidine system in an aqueous solution at рН 2–11. A comparison between the theoretical calculations and the EPR spectra suggests the following geometry for the coordination environment of the copper(II) ion in the complex compounds: CuHLL–square-planar coordination; CuL2, CuHLL′, and CuLL′–distorted square pyramid; and CuL2′–octahedral environment.


L-histidine EPR DFT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. L. Eichhorn (ed.), Inorganic Biochemistry, Amsterdam–London–New York (1973).Google Scholar
  2. 2.
    S. N. Bolotin, N. N. Bukov, V. A. Volynkin, and V. T. Panyushkin, Coordination Chemistry of Natural Amino Acids [in Russian], LKI, Moscow (2007).Google Scholar
  3. 3.
    А. М. Т. Sanz, P. J. C. Rodriguez, and M. F. J. Garcia, Chem. Commun., 57, 1405 (1992).Google Scholar
  4. 4.
    V. T. Panyushkin, Spectroscopy of Coordination Compounds of REEs [in Russian], Rostov Univ., Rostov-on-Don (1984).Google Scholar
  5. 5.
    M. M. Shoukry, E. M. Khairy, and R. G. Khalil, Transition Met. Chem., 22, No. 5, 465 (1997).CrossRefGoogle Scholar
  6. 6.
    T. Szabo-Planka, A. Rockenbauer, L. Korecz, and D. Nagy, Polyhedron, 19, 1123–1131 (2000).CrossRefGoogle Scholar
  7. 7.
    B. Kurzak, A. Kamecka, K. Bogusz, and J. Jezierska, Polyhedron, 27, 2952–2958 (2008).CrossRefGoogle Scholar
  8. 8.
    N. I. Jakab, B. Gyurcsik, T. Kortvelyesi, I. Vosekalna, J. Jensen, and E. Larsen, J. Inorg. Biochem., 101, 1376–1385 (2007).CrossRefGoogle Scholar
  9. 9.
    I. Kiseleva, D. Pyreu, T. Krivonogikh, M. Bazanova, T. Hochenkova, and E. Kozlovskii, Polyhedron, 51, 10–17 (2013).CrossRefGoogle Scholar
  10. 10.
    P. Deschampsa, P. P. Kulkarnia, M. Gautam-Basakb, and B. Sarkar, Coord. Chem. Rev., 249, 895–909 (2005).CrossRefGoogle Scholar
  11. 11.
    G. G. Gorboletova and A. A. Metlin, Zh. Fiz. Khim., 89, No. 2, 237–242 (2015).Google Scholar
  12. 12.
    V. A. Abramenko, S. N. Bolotin, and I. A. Nikolaenko, J. Mol. Liq., 91, Nos. 1-3, 219 (2001).CrossRefGoogle Scholar
  13. 13.
    N. P. Kryukova, S. N. Bolotin, and V. T. Panyushkin, Russ. Chem. Bull., No. 5, 1119–1122 (2003).CrossRefGoogle Scholar
  14. 14.
    V. T. Panyushkin, S. N. Bolotin, and A. V. Vashchuk, J. Struct. Chem., 38, No. 2, 310–312 (1997).CrossRefGoogle Scholar
  15. 15.
    F. H. Allen, Acta Crystallogr. Sect. B, B58, 380 (2002).CrossRefGoogle Scholar
  16. 16.
    P. Edington and M. M. Harding, Acta Crystallogr. Sect. B, 30, No. 1, 204 (1974).CrossRefGoogle Scholar
  17. 17.
    J. Donohue and A. Caron, Acta Crystallogr., 17, No. 9, 1178 (1964).CrossRefGoogle Scholar
  18. 18.
    N. T. Saraswathi and M. Vijayan, Acta Crystallogr. Sect. B, 58, No. 4, 734 (2002).CrossRefGoogle Scholar
  19. 19.
    H. A. Petrosyan, H. A. Karapetyan, M. Y. Antipin, and A. M. Petrosyan, J. Cryst. Growth., 275, Nos. 1/2, e1919 (2005).CrossRefGoogle Scholar
  20. 20.
    I. Bennett, A. G. H. Davidson, M. M. Harding, and I. Morelle, Acta Crystallogr. Sect. B, 26, No. 11, 1722 (1970).CrossRefGoogle Scholar
  21. 21.
    S. N. Bolotin, A. V. Vashchuk, and V. T. Panyushkin, Zh. Obshch. Khim., 66, No. 8, 1360 (1996).Google Scholar
  22. 22.
    S. N. Bolotin and V. T. Panyushkin, Zh. Obshch. Khim., 68, No. 6, 1034 (1998).Google Scholar
  23. 23.
    B. P. Demidovich and I. A. Maron, Fundamental of Computational Mathematics [in Russian], Nauka, Moscow (1970).Google Scholar
  24. 24.
    I. A. Nikolaenko, V. T. Panyushkin, and S. N. Bolotin, Software System for Calculating EPR Spectrum Parameters for Complex Cu(II) Compounds with Different Organic Ligands. Computer Program Registration Certificate N. 2002610136, Kuban State University, Krasnodar (2002).Google Scholar
  25. 25.
    R. Wilson and D. Kivelson, J. Chem. Phys., 44, No. 1, 154 (1966).CrossRefGoogle Scholar
  26. 26.
    I. Sovago, T. Kiss, and A. Gergely, J. Chem. Soc., Dalton Trans., No. 8, 964 (1978).CrossRefGoogle Scholar
  27. 27.
    V. A. Kogan, V. V. Zelentsov, G. M. Larin, and V. V. Lukov, Complexes of Transition Metals with Hydrazones [in Russian], Nauka, Moscow (1990).Google Scholar
  28. 28.
    D. Kivelson and G. Collins, Electron Spin Resonance Line Width in Liquids. Paramagnetic Resonance. Vol. 2, Academic Press, New York (1962).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. T. Panyushkin
    • 1
  • I. N. Shcherbakov
    • 2
  • V. A. Volynkin
    • 1
  • S. N. Bolotin
    • 1
  • N. N. Bukov
    • 1
  • T. V. Shvydko
    • 2
  • L. Kh. Dzhabrailova
    • 3
  • M. Kh. Shamsutdinova
    • 3
  1. 1.Kuban State UniversityKrasnodarRussia
  2. 2.South Federal UniversityRostov-on-DonRussia
  3. 3.Chechen State UniversityGroznyRussia

Personalised recommendations