Skip to main content
Log in

Effects of heteroatoms on the electronic, sensor, and adsorption properties of graphene

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The effects of doping heteroatoms on the structure, electronic and adsorption properties of graphene are investigated using density functional theory calculations. Six different doped graphenes (with Al, B, Si, N, P, and S) are considered, and to obtain the interaction and adsorption properties, three sulfur-containing molecules (H2S, SO2, and thiophene) were interacted with selected graphenes. The adsorption energies (E ad) in the gas phase and solvents show the exothermic interaction for all complexes. The maximum E ad values are observed for aluminum doped graphene (AG) and silicon doped graphene (SiG), and adsorption energies in the solvent are not so different from those in the gas phase. NBO calculations show that the AG and SiG complexes have the highest E (2) interaction energies and simple graphene (G) and nitrogen doped graphene (NG) have the least E (2) energies. Population analyses show that doping heteroatoms change the energy gap. This gap changes more during the interaction and these changes make these structures useful in sensor devices. All calculated data confirm better adsorption of SO2 by graphenes versus H2S and thiophene. Among all graphenes, AG and then SiG are the best adsorbents for these structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. E. Lammert and V. H. Crespi, Phys. Rev. B, 61, 7308–7311 (2000).

    Article  CAS  Google Scholar 

  2. F. Karlicky, R. Zboril, and M. Otyepka, J. Chem. Phys., 137, 34709–34712 (2012).

    Article  Google Scholar 

  3. P. Rani and V. K. Jindal, RSC Adv., 3, 802–812 (2013).

    Article  CAS  Google Scholar 

  4. E. V. Castro, K. S. Novoselov, S. V. Morozov, et al., Phys. Rev. Lett., 99, 216802–216805 (2007).

    Article  Google Scholar 

  5. X. Yang, Y. Wang, X. V. Huang, et al., J. Mater. Chem., 21, 3448–3454 (2011).

    Article  CAS  Google Scholar 

  6. S. C. Ohern, M. S. H. Boutilier, J. C. Idrobo, et al., Nano Lett., 14, 1234–1241 (2014).

    Article  CAS  Google Scholar 

  7. P. Sun, M. Zhu, K. Wang, et al., ACS Nano, 7, 428–437 (2013).

    Article  CAS  Google Scholar 

  8. D. C. Tanugi and J. C. Grossman, Nano Lett., 12, 3602–3608 (2012).

    Article  Google Scholar 

  9. A. A. Koos, R. J. Nicholls, F. Dillon, et al., Carbon, 50, 2816–2823 (2012).

    Article  CAS  Google Scholar 

  10. J. Liu, H. Liu, Y. Zhang, et al., Carbon, 49, 5014–5021 (2011).

    Article  CAS  Google Scholar 

  11. F. H. Monteiro, D. G. Larrude, M. E. H. Maia da Costa, et al., J. Phys. Chem. C, 116, 3281–3285 (2012).

    Article  CAS  Google Scholar 

  12. W. Yuan and G. J. Shi, Mater. Chem. A, 1, 10078–10091 (2013).

    Article  CAS  Google Scholar 

  13. F. Hassani and H. Tavakol, Sens. Actuators B, 196, 624–630 (2014).

    Article  CAS  Google Scholar 

  14. H. Tavakol and F. Hassani, Struct. Chem., 26, 151–158 (2015).

    Article  CAS  Google Scholar 

  15. H. Tavakol and A. Mollaei-Renani, Struct. Chem., 25, 1659–1667 (2014).

    Article  CAS  Google Scholar 

  16. A. L. E. Garcia, S. E. Baltazar, A. H. Romero, et al., J. Comput. Theor. Nanosci., 5, 221–229 (2008).

    Article  Google Scholar 

  17. G. Shi, Y. Ding, and H. J. Fang, Comput. Chem., 33, 1328–1337 (2012).

    Article  CAS  Google Scholar 

  18. E. C. Anota, A. R. Juarez, M. Castro, et al., J. Mol. Model., 19, 321–328 (2013).

    Article  CAS  Google Scholar 

  19. H. Kishi, M. Tani, M. Sakaue, et al., J. Vac. Soc. Jpn., 55, 198–203 (2012).

    Article  CAS  Google Scholar 

  20. I. G. Ayala and N. A. Cordero, J. Nanopart. Res., 14, 1071–1079 (2012).

    Article  Google Scholar 

  21. A. N. Rudenko, F. J. Keil, M. I. Katsnelson, et al., Phys. Rev. B, 86, 075422 (2012).

    Article  Google Scholar 

  22. M. Mirzaei and M. Yousefi, Superlattices Microstruct., 52, 1–7 (2013).

    Article  Google Scholar 

  23. A. Ambrosetti and P. L. Silvestrelli, J. Phys. Chem. C, 115, 3695–3702 (2011).

    Article  CAS  Google Scholar 

  24. L. Zhang, J. Niu, L. Dai, et al., Langmuir, 28, 7542–7550 (2012).

    Article  CAS  Google Scholar 

  25. X. Gu, Y. Yang, Y. Hu, et al., RSC Adv., 4, 63189–63199 (2014).

    Article  CAS  Google Scholar 

  26. Y. L. Wang, K. H. Su, and J. P. Zhang, Adv. Mater. Res., 463, 1488–1492 (2012).

    Article  Google Scholar 

  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, USA (2009).

    Google Scholar 

  28. H. Tavakol, THEOCHEM, 954, 16–21 (2010).

    Article  CAS  Google Scholar 

  29. Z. Javanshir, K. Mehrani, S. Ghammamy, et al., Bull. Korean Chem. Soc., 2, 1464–1466 (2008).

    Google Scholar 

  30. H. Tavakol, M. Esfandyari, S. Taheri, et al., Spectrochim. Acta A, 79, 574–582 (2011).

    Article  CAS  Google Scholar 

  31. B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys., 98, 5612–5618 (1993).

    Article  CAS  Google Scholar 

  32. C. W. Bauschlicher and H. T. Partridge, Chem. Phys. Lett., 240, 533–540 (1995).

    Article  CAS  Google Scholar 

  33. H. Tavakol, T. Hadadi, and H. Roohi, J. Struct. Chem., 53, 649–658 (2012).

    Article  CAS  Google Scholar 

  34. H. Tavakol, Int. J. Quantum Chem., 111, 3717–3724 (2011).

    CAS  Google Scholar 

  35. H. Tavakol, Mol. Simul., 36, 391–402 (2010).

    Article  CAS  Google Scholar 

  36. J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 10, 6615–6620 (2008).

    Article  CAS  Google Scholar 

  37. J. Antony and S. Grimme, Phys. Chem. Chem. Phys., 8, 5287–5293 (2006).

    Article  CAS  Google Scholar 

  38. P. Jurecka, J. Cerny, P. Hobza, et al., J. Comput. Chem., 28, 555–569 (2007).

    Article  CAS  Google Scholar 

  39. S. Mietrus and E. Scrocco, J. Chem. Phys., 55, 117–122 (1981).

    Google Scholar 

  40. E. D. Glendening, A. E. Reed, J. E. Carpenter, et al., NBO, Version 3.1 (2006).

    Google Scholar 

  41. N. M. Oboyle, A. L. Tenderholt, and K. M. Langner, J. Comput. Chem., 29, 839–845 (2008).

    Article  CAS  Google Scholar 

  42. R. G. Parr, R. Donnelly, M. Levy, and W. E. Palke, J. Chem. Phys., 68, 3801–3808 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amir Aslanzadeh.

Additional information

The text was submitted by the authors in English.

Zhurnal Strukturnoi Khimii, Vol. 58, No. 3, pp. 506-515, March-April, 2017.

Original Russian Text © 2017 S. Amir Aslanzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amir Aslanzadeh, S. Effects of heteroatoms on the electronic, sensor, and adsorption properties of graphene. J Struct Chem 58, 479–488 (2017). https://doi.org/10.1134/S0022476617030088

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617030088

Keywords

Navigation