Skip to main content
Log in

Quantum mechanical study of carbon nanotubes functionalized with drug gentamicin

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

In this work, using quantum mechanics, the noncovalent interactions and two mechanisms of covalent functionalization of drug gentamicin with (5,5) COOH and COCl functionalized carbon nanotubes are studied. All of the calculations are performed using a hybrid density functional method (UB3LYP) in the solution phase. Quantum molecular descriptors for four possible modes of the noncovalent interaction are investigated. It is found that the binding of gentamicin with COOH (NCOOH) and COCl (NCOCl) functionalized carbon nanotubes is thermodynamically favorable. Among NCOOH and NCOCl, the first one has higher binding energy and can act as a suitable system for the drug gentamicin delivery within biological systems (noncovalent). COOH and COCl functionalized carbon nanotubes can bond to gentamicin via OH (COOH mechanism) and Cl (COCl mechanism) groups, respectively. The activation energies of four pathways in two mechanisms are calculated and compared with each other. It is specified that the COOH mechanism has an energy barrier higher than that of the COCl mechanism, being the reason for the suitability of the COCl mechanism for covalent functionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. C. Popat, M. Eltgroth, T. J. LaTempa, C. A. Grimes, and T. A. Desai, Biomaterials, 28, 4880–4888 (2007).

    Article  CAS  Google Scholar 

  2. D. Tomalia, L. Reyna, and S. Svenson, Biochem. Soc. Trans., 35, 61 (2007).

    Article  CAS  Google Scholar 

  3. A. Chonn and P. R. Cullis, Curr. Opin. Biotechnol., 6, 698–708 (1995).

    Article  CAS  Google Scholar 

  4. T. M. Allen and P. R. Cullis, Science, 303, 1818–1822 (2004).

    Article  CAS  Google Scholar 

  5. M. Prato, K. Kostarelos, and A. Bianco, Acc. Chem. Res., 41, 60–68 (2007).

    Article  Google Scholar 

  6. S. Wong, S. L. Yoong, A. Jagusiak, T. Panczyk, H. K. Ho, W. H. Ang, and G. Pastorin, Adv. Drug. Delivery Rev., 65, 1964–2015 (2013).

    Article  CAS  Google Scholar 

  7. S. Sharifi, M. M. Hashemi, M. Mosslemin, and F. Mollaamin, J. Comput. Theor. Nanosci., 11, 1178–1183 (2014).

    Article  CAS  Google Scholar 

  8. Z. Hosni, R. Bessrour, and B. Tangour, J. Comput. Theor. Nanosci., 11, 318–323 (2014).

    Article  CAS  Google Scholar 

  9. N. Saikia and R. C. Deka, J. Mol. Model., 19, 215–226 (2013).

    Article  CAS  Google Scholar 

  10. P. Prajongtat, S. Suramitr, M. P. Gleeson, K. Mitsuke, and S. Hannongbua, Monatsh. Chem., 144, 925–935 (2013).

    Article  CAS  Google Scholar 

  11. Y. Lin, L. F. Allard, and Y.-P. Sun, J. Phys. Chem. B, 108, 3760–3764 (2004).

    Article  CAS  Google Scholar 

  12. J. Azimov, S. Mamatkulov, N. Turaeva, B. Oxengendler, and S. S. Rashidova, J. Struct. Chem., 53, 829–834 (2012).

    Article  CAS  Google Scholar 

  13. A. Star, Y. Liu, K. Grant, L. Ridvan, J. F. Stoddart, D. W. Steuerman, M. R. Diehl, A. Boukai, and J. R. Heath, Macromolecules, 36, 553–560 (2003).

    Article  CAS  Google Scholar 

  14. J. Beheshtian, A. A. Peyghan, and Z. Bagheri, Monatsh. Chem., 143, 1623–1626 (2012).

    Article  CAS  Google Scholar 

  15. G. Canto, E. Martínez-Guerra, and N. Takeuchi, Comp. Mater. Sci., 42, 322–328 (2008).

    Article  CAS  Google Scholar 

  16. G. Dovbeshko, O. Fesenko, E. Obraztsova, K. Allakhverdiev, and A. Kaja, J. Struct. Chem., 50, 954–961 (2009).

    Article  CAS  Google Scholar 

  17. M. Rajarajeswari, K. Iyakutti, and Y. Kawazoe, J. Mol. Model., 18, 771–781 (2012).

    Article  CAS  Google Scholar 

  18. M. T. Baei, A. A. Peyghan, and M. Moghimi, Monatsh. Chem., 143, 1463–1470 (2012).

    Article  CAS  Google Scholar 

  19. H. Li, J. He, Y. Zhao, G. Wang, and Q. Wei, J. Inorg. Organomet. Polym., 21, 890–892 (2011).

    Article  CAS  Google Scholar 

  20. R. G. Parr, L. v. Szentpaly, and S. Liu, J. Am. Chem. Soc., 121, 1922–1924 (1999).

    Article  CAS  Google Scholar 

  21. J. Fehir, J. Richard, and J. K. McCusker, J. Phys. Chem. A, 113, 9249–9260 (2009).

    Article  CAS  Google Scholar 

  22. T. Lin, V. Bajpai, T. Ji, and L. Dai, Aust. J. Chem., 56, 635–651 (2003).

    Article  CAS  Google Scholar 

  23. A. D. Becke, Phys. Rev. A, 38, 3098 (1988).

    Article  CAS  Google Scholar 

  24. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  25. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785 (1988).

    Article  CAS  Google Scholar 

  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Gaussian Inc., Wallingford CT (2009).

    Google Scholar 

  27. S. H. Vahidi, A. Morsali, and S. A. Beyramabadi, Comput. Theor. Chem., 994, 41–46 (2012).

    Article  Google Scholar 

  28. S. A. Beyramabadi, A. Morsali, and A. Shams, J. Struct. Chem., 56, 243–249 (2015).

    Article  CAS  Google Scholar 

  29. A. Morsali, F. Hoseinzade, A. Akbari, S. A. Beyramabadi, and R. Ghiasi, J. Solution Chem., 42, 1902–1911 (2013).

    Article  CAS  Google Scholar 

  30. S. A. Beyramabadi, A. Morsali, S. H. Vahidi, M. Khoshkholgh, and A. Esmaeili, J. Struct. Chem., 53, 460–467 (2012).

    Article  CAS  Google Scholar 

  31. S. A. Beyramabadi, H. Eshtiagh-Hosseini, M. R. Housaindokht, and A. Morsali, Organometallics, 27, 72–79 (2007).

    Article  Google Scholar 

  32. H. Eshtiagh-Hosseini, S. A. Beyramabadi, M. Mirzaei, A. Morsali, A. Salimi, and M. Naseri, J. Struct. Chem., 54, 1063–1069 (2013).

    Article  CAS  Google Scholar 

  33. A. Morsali, Int. J. Chem. Kinet., 47, 73–81 (2015).

    Article  CAS  Google Scholar 

  34. R. Cammi and J. Tomasi, J. Comput. Chem., 16, 1449–1458 (1995).

    Article  CAS  Google Scholar 

  35. J. Tomasi and M. Persico, Chem. Rev., 94, 2027–2094 (1994).

    Article  CAS  Google Scholar 

  36. S. Dapprich, I. Komáromi, K. S. Byun, K. Morokuma, and M. J. Frisch, J. Mol. Struct.: THEOCHEM, 461, 1–21 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Morsali.

Additional information

The text was submitted by the authors in English.

Zhurnal Strukturnoi Khimii, Vol. 58, No. 3, pp. 490-498, March-April, 2017.

Original Russian Text © 2017 A. Mansoorinasab, A. Morsali, M. M. Heravi, S. A. Beyramabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoorinasab, A., Morsali, A., Heravi, M.M. et al. Quantum mechanical study of carbon nanotubes functionalized with drug gentamicin. J Struct Chem 58, 462–470 (2017). https://doi.org/10.1134/S0022476617030064

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617030064

Keywords

Navigation