Skip to main content
Log in

Measurement of the unwinding force of a DNA double helix

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The review is devoted to measurement methods of bond rupture forces in complex biological molecules, namely, the unwinding forces of a DNA double helix. Mechanical methods not affecting electromagnetically a system under study, which is especially significant for biological systems, are considered. We describe two main methods: atomic force microscopy and rupture event scanning. The latter is a new method also based on the mechanical action but it has a much simpler instrumental implementation. The capabilities of both methods are compared and they are shown to be promising to investigate chemical bond rupture forces in biological systems. The application of these methods to study the strength of chemical bonds is associated with overcoming numerous technical difficulties in both performance of measurements themselves and chemical modification of conjugated surfaces. We demonstrate the applicability of these methods not only for fundamental studies of the strength of chemical bonds determining the stability and the related possibility of functioning of three-dimensional biomolecular complexes, but also for the design of biosensors based on the mechanical effect (quartz crystal microbalance, QCM), e.g., with an opportunity of rapid analysis of DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Kufer, E. M. Puchner, H. Gumpp, T. Liedl, and H. E. Gaub, Science, 319, 594–596 (2008).

    Article  CAS  Google Scholar 

  2. T. Strunz, K. Oroszlan, R. Schafer, and H.-J. Guntherodt, Proc. Natl. Acad. Sci. U.S.A., 96, 11277–11282 (1999).

    Article  CAS  Google Scholar 

  3. F. Kienberger, G. Kada, H. Mueller, and P. Hinterdorfer, J. Mol. Biol., 34, 597–606 (2005).

    Article  Google Scholar 

  4. S. J. Grabowski, Annu. Rep. Prog. Chem. C, 102, 131–165 (2006).

    Article  CAS  Google Scholar 

  5. G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett., 56, 930–933 (1986).

    Article  CAS  Google Scholar 

  6. S. C. Minne, P. Flueckiger, H. T. Soh, and C. F. Quate, J. Vac. Sci. Technol., B, 13, No. 3, 1380–1385 (1995).

    Article  CAS  Google Scholar 

  7. T. Junno, K. Deppert, L. Montelius, and L. Samuelson, Appl. Phys. Lett., 66, No. 26, 3627–3629 (1995).

    Article  CAS  Google Scholar 

  8. Y. L. Lyubchenko and L. S. Shlyakhtenko, Proc. Natl. Acad. Sci., 94, No. 2, 496–501 (1997).

    Article  CAS  Google Scholar 

  9. Y. C. Lee, H. J. Kim, K. S. Kim, S. Choi, S. W. Kim, H. K. Park, and Y. G. Eun, Microsc. Res. Tech., 78, No. 7, 569–576 (2015).

    Article  Google Scholar 

  10. M. Leitner, N. Mitchell, M. Kastner, R. Schlapak, H. J. Gruber, and P. Hinterdorfer, ACS Nano, 5, No. 9, 7048–7054 (2011).

    Article  CAS  Google Scholar 

  11. E. Rettler, S. Hoeppener, B. W. Sigusch, and U. S. Schubert, J. Mater. Chem. B, 1, No. 22, 2789–2806 (2013).

    Article  CAS  Google Scholar 

  12. Q. Li, B. Doyran, L. W. Gamer, X. L. Lu, L. Qin, C. Ortiz, A. J. Grodzinsky, V. Rosen, and L. Han, J. Biomech., 48, No. 8, 1364–1370 (2015).

    Article  Google Scholar 

  13. H. J. Butt, B. Cappella, and M. Kappl, Surf. Sci. Rep., 59, No. 1, 1–152 (2005).

    Article  CAS  Google Scholar 

  14. F. L. Leite, C. C. Bueno, A. L. Da Róz, E. C. Ziemath, and O. N. Oliveira, Int. J. Mol. Sci., 13, No. 10, 12773–12856 (2012).

    Article  CAS  Google Scholar 

  15. H. A. Kramers, Physica, 7, No. 4, 284–304 (1940).

    Article  CAS  Google Scholar 

  16. G. I. Bell, Science, 200, No. 4342, 618–627 (1978).

    Article  CAS  Google Scholar 

  17. E. Evans and K. Ritchie, Biophys. J., 72, No. 4, 1541 (1997).

    Article  CAS  Google Scholar 

  18. O. H. Willemsen, M. M. Snel, K. O. Van Der Werf, B. G. De Grooth, J. Greve, P. Hinterdorfer, H. J. Gruber, H. Schindler, Y. van Kooyk, and C. G. Figdor, Biophys. J., 75, No. 5, 2220–2228 (1998).

    Article  CAS  Google Scholar 

  19. S. Allen, J. Davies, A. C. Dawkes, M. C. Davies, J. C. Edwards, M. C. Parker, C. J. Roberts, J. Sefton, S. J. B. Tendler, and P. M. Williams, FEBS Lett., 390, No. 2, 161–164 (1996).

    Article  CAS  Google Scholar 

  20. G. U. Lee, L. A. Chrisey, and R. J. Colton, Science, 266, No. 5186, 771–773 (1994).

    Article  CAS  Google Scholar 

  21. M. E. Drew, A. Chworos, E. Oroudjev, H. Hansma, and Y. A. Yamakoshi, Langmuir, 26, No. 10, 7117–7125 (2009).

    Article  Google Scholar 

  22. T. S. Tsapikouni and Y. F. Missirlis, Colloids Surf., B, 75, No. 1, 252–259 (2010).

    Article  CAS  Google Scholar 

  23. F. Benedetti, Statistical Study of the Unfolding of Multimodular Proteins and their Energy Landscape by Atomic Force Microscopy, Doctoral Dissertation, École Polytechnique Fédérale De Lausanne (2012).

    Google Scholar 

  24. S. W. Han, S. Mieda, C. Nakamura, T. Kihara, N. Nakamura, and J. Miyake, J. Mol. Recognit., 24, No. 1, 17–22 (2011).

    Article  CAS  Google Scholar 

  25. F. Schwesinger, R. Ros, T. Strunz, D. Anselmetti, H. J. Güntherodt, A. Honegger, L. Jermutus, L. Tiefenauer, and A. Plückthun, Proc. Natl. Acad. Sci., 97, No. 18, 9972–9977 (2000).

    Article  CAS  Google Scholar 

  26. A. W. Flounders, D. L. Brandon, and A. H. Bates, Appl. Biochem. Biotech., 50, No. 3, 265–284 (1995).

    Article  CAS  Google Scholar 

  27. J. Hoypierres, V. Dulong, C. Rihouey, S. Alexandre, L. Picton, and P. Thébault, Langmuir, 31, No. 1, 254–261 (2014).

    Article  Google Scholar 

  28. J. Cho, N. Levy, A. Kirakosian, M. J. Comstock, F. Lauterwasser, J. M. Fréchet, and M. F. Crommie, J. Chem. Phys., 131, No. 3, 034707 (2009).

    Article  Google Scholar 

  29. O. Cavalleri, C. Natale, M. E. Stroppolo, A. Relini, E. Cosulich, S. Thea, M. Novi, and A. Gliozzi, Phys. Chem. Chem. Phys., 2, No. 20, 4630–4635 (2000).

    Article  CAS  Google Scholar 

  30. D. C. Klein, C. M. Stroh, H. M. van Es Jensenius, A. S. M. Kamruzzahan, A. Stamouli, H. J. Gruber, T. H. Oosterkamp, and P. Hinterdorfer, ChemPhysChem, 4, No. 12, 1367–1371 (2003).

    Article  CAS  Google Scholar 

  31. J. Blass, M. Albrecht, B. L. Bozna, G. Wenz, and R. Bennewitz, Nanoscale, 7, No. 17, 7674–7681 (2015).

    Article  CAS  Google Scholar 

  32. I. Y. Phang, N. Aldred, X. Y. Ling, J. Huskens, A. S. Clare, and G. J. Vancso, J. R. Soc., Interface, rsif20090127 (2009).

    Google Scholar 

  33. X. Han, M. Qin, H. Pan, Y. Cao, and W. Wang, Langmuir, 28, No. 26, 10020–10025 (2012).

    Article  CAS  Google Scholar 

  34. A. R. Bizzarri and S. Cannistraro, Nanotechnology, 25, No. 33, 335102 (2014).

    Article  Google Scholar 

  35. X. Wang, M. M. Shindel, S. W. Wang, and R. Ragan, Langmuir, 28, No. 19, 7417–7427 (2012).

    Article  CAS  Google Scholar 

  36. P. Vermette, T. Gengenbach, U. Divisekera, P. A. Kambouris, H. J. Griesser, and L. Meagher, J. Colloid Interface Sci., 259, No. 1, 13–26 (2003).

    Article  CAS  Google Scholar 

  37. F. Kühner, L. T. Costa, P. M. Bisch, S. Thalhammer, W. M. Heckl, and H. E. Gaub, Biophys. J., 87, No. 4, 2683–2690 (2004).

    Article  Google Scholar 

  38. P. D. Pollheimer, P. Winklehner, M. Hölzl, B. Lackner, D. M. Schörkl, P. Hinterdorfer, and H. J. Gruber, Bioconjugate Chem., 17, No. 6, 1473–1481 (2006).

    Article  Google Scholar 

  39. C. K. Riener, C. M. Stroh, A. Ebner, C. Klampfl, A. A. Gall, C. Romanin, Y. L. Lyubchenko, P. Hinterdorfer, and H. J. Gruber, Anal. Chim. Acta, 479, No. 1, 59–75 (2003).

    Article  CAS  Google Scholar 

  40. E. Jauvert, E. Dague, M. Séverac, L. Ressier, A. M. Caminade, J. P. Majoral, and E. Trévisiol, Sens. Actuators, B, 168, 436–441 (2012).

    Article  CAS  Google Scholar 

  41. V. K. Yadavalli, J. G. Forbes, and K. Wang, Langmuir, 22, No. 16, 6969–6976 (2006).

    Article  CAS  Google Scholar 

  42. X. Zhang and V. K. Yadavalli, Anal. Chim. Acta, 649, No. 1, 1–7 (2009).

    Article  CAS  Google Scholar 

  43. A. V. Krasnoslobodtsev, Y. Zhang, E. Viazovkina, A. Gall, C. Bertagni, and Y. L. Lyubchenko, Biophys. J., 108, No. 9, 2333–2339 (2015).

    Article  CAS  Google Scholar 

  44. L. S. Shlyakhtenko, A. A. Gall, J. J. Weimer, D. D. Hawn, and Y. L. Lyubchenko, Biophys. J., 77, No. 1, 568–576 (1999).

    Article  CAS  Google Scholar 

  45. K. Saal, V. Sammelselg, A. Lõhmus, E. Kuusk, G. Raidaru, T. Rinken, and A. Rinken, Biomol. Eng., 19, No. 2, 195–199 (2002).

    Article  CAS  Google Scholar 

  46. E. Casero, M. Darder, D. J. Diaz, F. Pariente, J. A. Martin-Gago, H. Abruna, and E. Lorenzo, Langmuir, 19, No. 15, 6230–6235 (2003).

    Article  CAS  Google Scholar 

  47. T. Das, P. K. Sharma, B. P. Krom, H. C. van der Mei, and H. J. Busscher, Langmuir, 27, No. 16, 10113–10118 (2011).

    Article  CAS  Google Scholar 

  48. R. M. A. Sullan, J. K. Li, P. J. Crowley, L. J. Brady, and Y. F. Dufrêne, ACS Nano, 9, No. 2, 1448–1460 (2015).

    Article  CAS  Google Scholar 

  49. A. Beaussart, A. E. Baker, S. L. Kuchma, S. El-Kirat-Chatel, G. A. O′Toole, and Y. F. Dufrêne, ACS Nano, 8, No. 10, 10723–10733 (2014).

    Article  CAS  Google Scholar 

  50. A. P. Wiita, S. R. K. Ainavarapu, H. H. Huang, and J. M. Fernandez, Proc. Natl. Acad. Sci., 103, No. 19, 7222–7227 (2006).

    Article  CAS  Google Scholar 

  51. H. Gumpp, E. M. Puchner, J. L. Zimmermann, U. Gerland, H. E. Gaub, and K. Blank, Nano Lett., 9, No. 9, 3290–3295 (2009).

    Article  CAS  Google Scholar 

  52. W. Christenson, I. Yermolenko, B. Plochberger, F. Camacho-Alanis, A. Ros, T. P. Ugarova, and R. Ros, Ultramicroscopy, 136, 211–215 (2014).

    Article  CAS  Google Scholar 

  53. Y. He, M. Lu, J. Cao, and H. P. Lu, ACS Nano, 6, No. 2, 1221–1229 (2012).

    Article  CAS  Google Scholar 

  54. A. Noy, D. V. Vezenov, J. F. Kayyem, T. J. Maade, and C. M. Lieber, Chem. Biol., 4, No. 7, 519–527 (1997).

    Article  CAS  Google Scholar 

  55. C. Ke, M. Humeniuk, S. Hanna, and P. E. Marszalek, Phys. Rev. Lett., 99, No. 1, 018302 (2007).

    Article  Google Scholar 

  56. T. B. Zhang, C. L. Zhang, Z. L. Dong, and Y. F. Guan, Sci. Rep., 5, 9143 (2015).

    Article  CAS  Google Scholar 

  57. M. Santosh and P. K. Maiti, J. Phys.: Condens. Matter, 21, No. 3, 034113 (2008).

    Google Scholar 

  58. R. Krautbauer, M. Rief, and H. E. Gaub, Nano Lett., 3, No. 4, 493–496 (2003).

    Article  CAS  Google Scholar 

  59. E. Sengupta, Y. Yan, X. Wang, K. Munechika, and D. S. Ginger, ACS Nano, 8, No. 3, 2625–2631 (2014).

    Article  CAS  Google Scholar 

  60. X. Wang, R. N. Sanderson, and R. Ragan, J. Phys. Chem. C, 118, No. 50, 29301–29309 (2014).

    Article  CAS  Google Scholar 

  61. A. Ashkin, Phys. Rev. Lett., 24, No. 4, 156 (1970).

    Article  CAS  Google Scholar 

  62. A. Ashkin, Phys. Rev. Lett., 25, No. 19, 1321 (1970).

    Article  CAS  Google Scholar 

  63. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, Biochemistry, 77, No. 1, 205 (2008).

    Article  CAS  Google Scholar 

  64. L. P. Ghislain and W. W. Webb, Opt. Lett., 18, No. 19, 1678–1680 (1993).

    Article  CAS  Google Scholar 

  65. H. Zhang and K. K. Liu, J. R. Soc., Interface, 5, No. 24, 671–690 (2008).

    CAS  Google Scholar 

  66. L. Sacconi, I. M. Tolić-Nørrelykke, C. Stringari, R. Antolini, and F. S. Pavone, Appl. Opt., 44, No. 11, 2001–2007 (2005).

    Article  Google Scholar 

  67. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, Biophys. J., 77, No. 5, 2856–2863 (1999).

    Article  CAS  Google Scholar 

  68. J. E. Molloy and M. J. Padgett, Contemp. Phys., 43, No. 4, 241–258 (2002).

    Article  CAS  Google Scholar 

  69. O. Otto, J. L. Gornall, G. Stober, F. Czerwinski, R. Seidel, and U. F. Keyser, J. Opt., 13, No. 4, 044011 (2011).

    Article  Google Scholar 

  70. A. Sischka, R. Eckel, K. Toensing, R. Ros, and D. Anselmetti, Rev. Sci. Instrum., 74, No. 11, 4827–4831 (2003).

    Article  CAS  Google Scholar 

  71. S. Heo, K. Kim, and Y. H. Cho, ChemPhysChem, 15, No. 8, 1573–1576 (2014).

    Article  CAS  Google Scholar 

  72. E. J. Peterman, F. Gittes, and C. F. Schmidt, Biophys. J., 84, No. 2, 1308–1316 (2003).

    Article  CAS  Google Scholar 

  73. B. Shergill, L. Meloty-Kapella, A. A. Musse, G. Weinmaster, and E. Botvinick, Dev. Cell, 22, No. 6, 1313–1320 (2012).

    Article  CAS  Google Scholar 

  74. T. Stangner, C. Wagner, D. Singer, S. Angioletti-Uberti, C. Gutsche, J. Dzubiella, R. Hoffmann, and F. Kremer, ACS Nano, 7, No. 12, 11388–11396 (2013).

    Article  CAS  Google Scholar 

  75. C. M. Cheng, Y. J. Lee, W. T. Wang, C. T. Hsu, J. S. Tsai, C. M. Wu, K. L. Ou, and T. S. Yang, Biochem. Biophys. Res. Commun., 404, No. 1, 297–301 (2011).

    Article  CAS  Google Scholar 

  76. M. Castelain, S. Ehlers, J. Klinth, S. Lindberg, M. Andersson, B. E. Uhlin, and O. Axner, Eur. Biophys. J., 40, No. 3, 305–316 (2011).

    Article  Google Scholar 

  77. M. Andersson, O. Björnham, M. Svantesson, A. Badahdah, B. E. Uhlin, and E. Bullitt, J. Mol. Biol., 415, No. 5, 918–928 (2012).

    Article  CAS  Google Scholar 

  78. N. Mortezaei, B. Singh, J. Zakrisson, E. Bullitt, and M. Andersson, Biophys. J., 109, No. 1, 49–56 (2015).

    Article  CAS  Google Scholar 

  79. M. Castelain, M. P. Duviau, A. Canette, P. Schmitz, P. Loubière, M. Cocaign-Bousquet, and M. Mercier-Bonin, PloS One, 11, No. 3, e0152053 (2016).

    Article  Google Scholar 

  80. A. J. Crick, M. Theron, T. Tiffert, V. L. Lew, P. Cicuta, and J. C. Rayner, Biophys. J., 107, No. 4, 846–853 (2014).

    Article  CAS  Google Scholar 

  81. G. Pobegalov, G. Cherevatenko, A. Alekseev, A. Sabantsev, O. Kovaleva, A. Vedyaykin, N. Morozova, D. Baitin, and M. Khodorkovskii, Biochem. Biophys. Res. Commun., 466, No. 3, 426–430 (2015).

    Article  CAS  Google Scholar 

  82. F. N. Dultsev, V. P. Ostanin, and D. Klenerman, Langmuir, 16, 5036–5040 (2000).

    Article  CAS  Google Scholar 

  83. F. N. Dultsev and E. A. Kolosovsky, Sens. Actuators, B, 143, 17–24 (2009).

    Article  Google Scholar 

  84. F. N. Dultsev, E. A. Kolosovsky, and I. A. Mik, Langmuir, 28, 13793–13797 (2012).

    Article  CAS  Google Scholar 

  85. B. Borovsky, B. L. Mason, and J. Krim, J. Appl. Phys., 88, No. 7, 4017–4021 (2000).

    Article  CAS  Google Scholar 

  86. L. D. Landau and E. M. Lifshits, Theoretical Physics, vol. 7: Theory of Elasticity [in Russian], 4th ed., Nauka, Moscow (1987).

    Google Scholar 

  87. F. N. Dultsev and E. A. Kolosovsky, Sens. Actuators, B, 202, 454–460 (2014).

    Article  CAS  Google Scholar 

  88. D. Eigler and E. Schweizer, Nature, 344, 524 (1990).

    Article  CAS  Google Scholar 

  89. Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance, and S. Morita, Nat. Mater., 4, No. 2, 156–159 (2005).

    Article  CAS  Google Scholar 

  90. T. Thundat, X. Zheng, G. Chen, and R. Warmack, Surf. Sci. Lett., 294, L939–L943 (1993).

    CAS  Google Scholar 

  91. F. N. Dultsev, E. A. Kolosovsky, I. A. Mik, A. A. Lomzov, and D. V. Pyshnyi, Langmuir, 30, 3795–3801 (2014).

    Article  CAS  Google Scholar 

  92. F. N. Dultsev, E. A. Kolosovsky, M. A. Cooper, A. A. Lomzov, and D. V. Pyshnyi, Sens. Biosensing Res., 4, 11–15 (2015).

    Article  Google Scholar 

  93. M. Mosayebi, A. A. Louis, J. P. Doye, and T. E. Ouldridge, ACS Nano, 9, No. 12, 11993–12003 (2015).

    Article  CAS  Google Scholar 

  94. S. B. Smith, Y. Cui, and C. Bustamante, Science, 271, 796–799 (1996).

    Google Scholar 

  95. J. F. Marko and E. D. Siggia, Macromolecules, 28, 8759–8770 (1995).

    Article  CAS  Google Scholar 

  96. H. Clausen-Schaumann, M. Rief, C. Tolksdorf, and H. E. Gaub, Biophys. J., 78, 1997–2007 (2000).

    Article  CAS  Google Scholar 

  97. I. Rouzina and V. A. Bloomfield, Biophys. J., 890, 882–893 (2001).

    Article  Google Scholar 

  98. B. Essevaz-Roulet, U. Bockelmann, and F. Heslot, Proc. Natl. Acad. Sci. U.S.A., 94, 11935–11949 (1997).

    Article  CAS  Google Scholar 

  99. M. Rief, H. Clausen-Schaumann, and H. E. Gaub, Nat. Struct. Biol., 6, 346–349 (1999).

    Article  CAS  Google Scholar 

  100. J. Morfill, F. Kuhner, K. Blank, R. A. Lugmaier, J. Sedlmair, and H. E. Gaub, Biophys. J., 93, No. 7, 2400–2409 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. N. Dultsev.

Additional information

Original Russian Text © 2017 N. N. Kurus, F. N. Dultsev.

Translated from Zhurnal Strukturnoi Khimii, Vol. 58, No. 2, pp. 332–356, February–March, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurus, N.N., Dultsev, F.N. Measurement of the unwinding force of a DNA double helix. J Struct Chem 58, 315–339 (2017). https://doi.org/10.1134/S0022476617020135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617020135

Keywords

Navigation