Skip to main content
Log in

Strong hydrogen bonded supramolecular architecture in a crystal of the {3-[2-(1,3-benzodioxol-5-yl)-7-methoxy-1-benzofuran-5-yl] propyl} diethylamine cation with the hydrogen bonded chloride hydrate anion (halides) assembly: X-ray structure, DFT calculations, Hirshfeld surface analysis

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The crystal structure of {3-[2-(1,3-benzodioxol-5-yl)-7-methoxy-1-benzofuran-5-yl] propyl} diethylamine hydrohloride hydrate [C23H28NO4]+•[H2OCl] is determined. The molecular geometrical parameters, frontier molecular orbital energies (HOMO, LUMO), their energy gap (ΔE), molecular electrostatic potential analysis of the compound are calculated by DFT/B3LYP at the 6-311G(d,p) level. The benzofuran and benzodioxo ring systems, except the diethylamine group, are essentially planar and a dihedral angle between the ring systems is 7.38(14)°. The compound crystallizes in the monoclinic space group P21/c, with a = 15.230(4) Å, b = 11.418(2) Å, c = 12.880(3) Å, β = 94.56(3)°, V = 2232.8(9) Å3, D calc = 1.297g/cm3, Z = 4. The hydrogen bonded Cl and H2O are self-assembled to form a supramolecular array of strong N–H…Cl and O–H…Cl bifurcated hydrogen bonds making tetramers which consist of a fused four-membered ring with a graph-set descriptor and a pseudo cyclic centrosymmetric R 2 2(8) ring motif. The hybrid dihalide-dihydrate clusters of [Cl2(H2O)2]2– are observed, too. The supramolecular crystal packing is consolidated by these bifurcated hydrogen bonds and the stacking of the sheet through strong π…π interactions. Moreover, the intra chain hydrogen bonds form intermolecular and intramolecular C–H…O hydrogen bonds, and the 1D supramolecular array is organized by C–H…π interactions. The contacts in the crystal structure are analyzed using the Hirshfeld surfaces computational method. The calculated geometrical parameters are in good agreement with the single crystal XRD data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Nevagi, S. N. Dighe, and S. N. Dighe, Eur. J. Med. Chem., 97, 561–581 (2015).

    Article  CAS  Google Scholar 

  2. H. Khanam and Shamsuzzaman, Eur. J. Med. Chem., 97, 483–504 (2015).

    Article  CAS  Google Scholar 

  3. S. E. Öztürk, Y. Akgül, and H. Anıl, Bioorg. Med. Chem., 16, 4431–4437 (2008).

    Article  Google Scholar 

  4. S. E. Öztürk, T. Karayıldırım, and H. Anıl, Bioorg. Med. Chem., 19, 1179–1188 (2011).

    Article  Google Scholar 

  5. Y. Marcus, Ion Solvation, Wiley, Chichester (1986).

    Google Scholar 

  6. D. T. Richens, The Chemistry of Aqua Ions, Wiley, Chichester (1997).

    Google Scholar 

  7. H. Ohtaki and T. Radnai, Chem. Rev., 93, 1157 (1993).

    Article  CAS  Google Scholar 

  8. P. S. Lakshminarayanan, E. Suresh, and P. Ghosh, Angew. Chem., Int. Ed., 45, 3807 (2006).

    Article  CAS  Google Scholar 

  9. R. Custelcean and M. G. Gorbunova, J. Am. Chem. Soc., 127, 16362 (2005).

    Article  CAS  Google Scholar 

  10. D. D. Kemp and M. S. Gordon, J. Phys. Chem. A, 109, 7688 (2005).

    Article  CAS  Google Scholar 

  11. W. H. Robertson and M. A. Johnson, Annu. Rev. Phys. Chem., 54, 173 (2003).

    Article  CAS  Google Scholar 

  12. R. Ayala, J. M. Martínez, R. R. Pappalardo, and E. S. Marcos, J. Chem. Phys., 119, 9538 (2003).

    Article  CAS  Google Scholar 

  13. D. Trzybin′ski and A. Sikorski, CrystEngComm, 15, 6808–6818 (2013).

    Article  Google Scholar 

  14. M. Fujita (ed.), Structure and Bonding, vol. 96: Molecular Self-Assembly. Organic versus Inorganic Approaches, Springer (2000).

    Google Scholar 

  15. G. R. Desiraju, Crystal Engineering: The Design of Organic Solids, Elsevier, Amsterdam (1989).

    Google Scholar 

  16. J.-M. Lehn, Supramolecular Chemistry, Concepts and Perspectives, VCH, Weinheim (1995).

    Book  Google Scholar 

  17. F. Li, T. H. Li, W. Su, S. Y. Gao, and R. Cao, Eur. J. Inorg. Chem., 1582–1587 (2006).

    Google Scholar 

  18. G. A. Jeffrey and S. Takagi, Acc. Chem. Res., 11, 264 (1978)

    Article  CAS  Google Scholar 

  19. G. A. Jeffrey and H. Maluszynska, Int. J. Biol. Macromol., 4, 173 (1982)

    Article  CAS  Google Scholar 

  20. G. A. Jeffrey and J. Mitra, J. Am. Chem. Soc., 106, 5546 (1984).

    Article  CAS  Google Scholar 

  21. I. Rozas, I. Alkorta, and J. Elguero, J. Phys. Chem., 102, 9925–9932 (1998).

    Article  CAS  Google Scholar 

  22. CrysAlisPro and CrysAlisRed, Agilent Technologies, Yarnton, Oxfordshire, England (2002).

  23. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann, J. Appl. Crystallogr., 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  24. G. M. Sheldrick, Acta Crystallogr. A, 64, 112 (2008).

    Article  CAS  Google Scholar 

  25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, J. T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision E. 01., Gaussian Inc., Pittsburgh, PA (2003).

    Google Scholar 

  26. A. Frisch, R. D. Dennington, T. A. Keith, J. Milliam, A. B. Nielsen, A. J. Holder, and J. Hiscocks, GaussView Reference, Version 4.0., Gaussian Inc., Pittsburgh (2007).

    Google Scholar 

  27. M. A. Spackman and D. Jayatilaka, CrystEngComm, 11, 19–32 (2009).

    Article  CAS  Google Scholar 

  28. M. A. Spackman and J. J. McKinnon, CrystEngComm, 4, 378–392 (2002).

    Article  CAS  Google Scholar 

  29. S. K. Wolff, D. J. Grimwood, J. J. McKinnon, M. J. Turner, D. Jayatilaka, and M. A. Spackman, CrystalExplorer (Version 3.0), University of Western Australia (2012).

    Google Scholar 

  30. D. Trzybinski and A. Sikorski, CrystEngComm, 15, 6808 (2013).

    Article  CAS  Google Scholar 

  31. M. C. Etter, J. C. MacDonald, and J. Bernstein, Acta Crystallogr. B, 46, 256–262 (1990).

    Article  Google Scholar 

  32. J. J. McKinnon, D. Jayatilaka, and M. A. Spackman, Chem. Commun., 3814–3816 (2007).

    Google Scholar 

  33. R. Chakrabarty, P. S. Mukherjee, and P. J. Stang, Chem. Rev., 111, No. 11, 6810–6918 (2011).

    Article  CAS  Google Scholar 

  34. J. X. Dai, F. H. Wu, W. R. Yao, and Q. F. Zhang, Z. Naturforsch., 62b, 491–494 (2007).

    Google Scholar 

  35. J. Lundgren and I. Olovsson, Acta Crystallogr., 23, 971 (1967).

    Article  CAS  Google Scholar 

  36. N. R. Babu, S. Subashchandrabose, M. S. A. Padusha, H. Saleem, and Y. Erdoğdu, Mol. Biomol. Spectrosc., 120, 314–322 (2014).

    Article  Google Scholar 

  37. S. Murugavel, N. Manıkandan, D. Lakshmanan, K. Naveen, and P. T. Perumal, J. Chil. Chem. Soc., 60, 3 (2015).

    Article  Google Scholar 

  38. J. J. McKinnon, M. A. Spackman, and A. S. Mitchell, Acta Crystallogr. B, 60, 627–668 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Yakalı.

Additional information

Original Russian Text © 2017 G. Yakalı, S. E. Öztürk, M. Aygün.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 58, No. 2, pp. 321–331, February–March, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakalı, G., Öztürk, S.E. & Aygün, M. Strong hydrogen bonded supramolecular architecture in a crystal of the {3-[2-(1,3-benzodioxol-5-yl)-7-methoxy-1-benzofuran-5-yl] propyl} diethylamine cation with the hydrogen bonded chloride hydrate anion (halides) assembly: X-ray structure, DFT calculations, Hirshfeld surface analysis. J Struct Chem 58, 304–314 (2017). https://doi.org/10.1134/S0022476617020123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617020123

Keywords

Navigation