Skip to main content
Log in

Chemical shielding of doped nitrogen on C20 cage and bowl fullerenes

  • Brief Communications
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The C20 (cage), C20 (bowl), C20H10 (bowl) fullerene structures and their nitrogen doped derivatives such as C20NH (cage), C20NH (bowl), C20H10N (bowl), C20H10NH (bowl) are fully optimized at the MPW1PW91/6-31G level of theory. The natural atomic charge comparison shows that in C20H10N (bowl), the nitrogen atom with about–0.58 has a more negative charge with respect to other nitrogen doped structures. The nuclear magnetic resonance chemical shielding is evaluated for nitrogen doped structures and the neighbors connected to nitrogen, C6, and C7 atoms. The nitrogen atom doped on carbon sites of C20H10N (bowl) has the largest shielding isotropic shifts to the upper field (–203.58 ppm). This means that the electron density around nitrogen in the C20H10N (bowl) structure is higher. Interestingly, there is a significant correlation between the charges and σiso values of nitrogen and carbon atoms (C6 and C7). Namely, as the charge becomes more negative, σiso shifts to the upper field. It is predicted that nitrogen doped C20H10N (bowl) with the maximum electron density adopts this structure for electrophilic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H. Prinzbach, A. Weiler, and P. Landenberer, Nature, 407, 60–63 (2000).

    Article  CAS  Google Scholar 

  2. F. Wahl, J. Wörth, and H. Prinzbach, Angew. Chem., Int. E, 32, 1722–1726 (1993).

    Article  Google Scholar 

  3. H. Prinzbach and K. Weber, Angew. Chem., Int. Ed., 33, 2239–2257 (1994).

    Article  Google Scholar 

  4. A. Kharlamov, Chem. Engineer. Sci., 3, 32–40 (2013).

    Article  Google Scholar 

  5. S. Sokolova, A. L€uchow, and J. B. Anderson, Chem. Phys. Lett., 323, 229–233 (2000).

    Article  CAS  Google Scholar 

  6. M. Saito and Y. Miyamoto, Phys. Rev. Lett., 87, 035503-1 (2001).

    Article  Google Scholar 

  7. A. H. Romero and D. Sebastiani, Chem. Phys. Lett., 366, 134–140 (2002).

    Article  CAS  Google Scholar 

  8. J. C. Grossmann, L. Mitas, and K. Raghavachari, Phys. Rev. Lett., 75, 3870–3873 (1995).

    Article  Google Scholar 

  9. S. Grimme and C. Muck-Lichtenfeld, Chem. Phys. Chem., 2, 207–209 (2002).

    Google Scholar 

  10. G. Galli, F. Gygi, and J. C. Golaz, Phys. Rev. B, 57, 1860–1867 (1998).

    Article  CAS  Google Scholar 

  11. R. O. Jones and G. Seifert, Phys. Rev. Lett., 79, 443–446 (1997).

    Article  CAS  Google Scholar 

  12. P. R. Birkett, M. Bühl, A. Khong, M. Saunders, and R. Taylor, J. Chem. Soc. Perkin Trans., 2, 2037–2039 (1999).

    Article  Google Scholar 

  13. P. W. Fowler, P. Lazzeretti, M. Malagoli, and R. Zanasi, Chem. Phys. Lett., 179, 174–180 (1991).

    Article  CAS  Google Scholar 

  14. G. H. Fath-Tabar, A. R. Ashrafi, and D. Stevanovic, J. Comput. Theor. Nanosci., 9, 327–329 (2012).

    Article  CAS  Google Scholar 

  15. P. Hrobárik, R. Reviakine, A. V. Arbuznikov, O. L. Malkina, and V. G. Malkin, J. Chem. Phys., 126, 024107 (2007)

    Article  Google Scholar 

  16. T. O. Pennanen and J. Vaara, Phys. Rev. Lett., 100, 2411/2412 (2008).

    Article  Google Scholar 

  17. K. Harigaya, J. Comput. Theor. Nanosci., 9, 347–350 (2012).

    Article  CAS  Google Scholar 

  18. K. Wolinski, J. F. Hilton, and P. Pulay, J. Am. Chem. Soc., 112, 8251–8260 (1990).

    Article  CAS  Google Scholar 

  19. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford (1989).

    Google Scholar 

  20. C. Adamo and V. Barone, J. Chem. Phys., 108, 664–675 (1998).

    Article  CAS  Google Scholar 

  21. B. J. Lynch, P. L. Fast, M. Harris, and D. G. Truhlar, J. Phys. Chem. A, 104, 4811–4815 (2000).

    Article  CAS  Google Scholar 

  22. M. J. Frisch, G. W. Trucks, H. B. Schlegel, and G. Scuserial, Gaussian 98, Revision A.7, Gaussian Inc., Pittsburgh PA (1998).

    Google Scholar 

  23. R. S. Drago, Physical Methods for Chemists, Saunders College Publishing, Florida (1992).

    Google Scholar 

  24. M. Hafied and M. Belloum, J. Comput. Theor. Nanosci., 9, 77–82 (2012).

    Article  CAS  Google Scholar 

  25. D. Sebastiani and M. Parrinello, J. Phys. Chem. A, 105, 1951–1058 (2001).

    Article  CAS  Google Scholar 

  26. M. Rezaei-Sameti, Quantum Matter, 2, 396–400 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. R. Nikmaram.

Additional information

The text was submitted by the authors in English.

Zhurnal Strukturnoi Khimii, Vol. 58, No. 1, pp. 180-184, January-February, 2017.

Original Russian Text © 2017 F. R. Nikmaram, A. Khoddamzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikmaram, F.R., Khoddamzadeh, A. Chemical shielding of doped nitrogen on C20 cage and bowl fullerenes. J Struct Chem 58, 173–177 (2017). https://doi.org/10.1134/S0022476617010231

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617010231

Keywords

Navigation