Journal of Structural Chemistry

, Volume 58, Issue 1, pp 45–52 | Cite as

Local atomic and electronic structure of quantum dots based on Mn- and Co-doped ZnS

  • A. N. Kravtsova
  • A. P. Budnik
  • I. A. Pankin
  • T. A. Lastovina
  • A. L. Bugaev
  • L. D. Popov
  • M. A. Soldatov
  • V. V. Butova
  • A. V. Soldatov
Article

Abstract

Solid solutions of zinc sulfide with manganese and cobalt are synthesized. Based on the analysis of X-ray diffraction profiles the conclusion is drawn about the formation of a hexagonal wurtzite type structure in the synthesized quantum dot (QD) solutions. The average crystallite sizes are 8 nm and 22 nm for the samples with manganese and cobalt respectively. Results of IR and optical spectroscopy are consistent with the powder X-ray diffraction and X-ray fluorescence data. The question about particle aggregation in isopropanol and DMF solutions is considered. The QD structures based on ZnS particles doped with Mn and Co transition metal atoms are modeled. The possibility to apply X-ray absorption near edge structure (XANES) spectroscopy to verify the atomic structure parameters around the positions of doping transition metal atoms in QDs of the ZnS family is shown. Partial densities of ZnS:Mn and ZnS:Co electronic states are calculated.

Keywords

quantum dots zinc sulfide solid solution atomic and electronic structures computer simulation XANES spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Costa-Fernandez, R. Pereiro, and A. Sanz-Medel, TrAC Trends Anal. Chem., 25, 207 (2006).CrossRefGoogle Scholar
  2. 2.
    K. Park, J. Joo, S. G. Kwon, et al., Angew. Chem. Int. Ed., 46, 4630 (2007).CrossRefGoogle Scholar
  3. 3.
    L. Bányai and S. W. Koch, Semicond. Quantum Dots, World Scientific, Singapore (1993).CrossRefGoogle Scholar
  4. 4.
    X. Fang, T. Zhai, and U. K. Gautam, Prog. Mater. Sci., 56, 175 (2011).CrossRefGoogle Scholar
  5. 5.
    R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Phys. Rev. Lett., 72, 416 (1994).CrossRefGoogle Scholar
  6. 6.
    V. F. Agekyan and N. G. Filosofov, Diluted Magnetic Semiconductors: Magnetic and Optical Properties [in Russian], Manual, St. Petersburg Univ., St. Petersburg (2014).Google Scholar
  7. 7.
    G. Bunker, Introduction to XAFS. A Practical Guide to X-ray Absorption Fine Structure Spectroscopy, Cambridge: University Press, UK (2010).CrossRefGoogle Scholar
  8. 8.
    A. N. Kravtsova, M. A. Soldatov, S. A. Suchkova, et al., J. Struct. Chem., 56, No. 3, 517 (2015).CrossRefGoogle Scholar
  9. 9.
    A. N. Kravtsova, K. A. Lomachenko, S. A. Suchkova, et al., Izv. RAN. Ser. Fiz., 79, No. 11, 1612 (2015).Google Scholar
  10. 10.
    A. N. Kravtsova, S. A. Suchkova, M. B. Fain, and A. V. Soldatov, J. Struct. Chem., 57, No. 3, 491 (2016).CrossRefGoogle Scholar
  11. 11.
    D. E. Dunstan, A. Hagfeldt, M. Almgren, et al., J. Phys. Chem., 94, 6797 (1990).CrossRefGoogle Scholar
  12. 12.
    K. Sooklal, B. S. Cullum, S. M. Angel, et al., J. Phys. Chem., 100, 4551 (1996).CrossRefGoogle Scholar
  13. 13.
    N. Karar, H. Chander, and S. M. Shivaprasad, Appl. Phys. Lett., 85, 5058 (2004).CrossRefGoogle Scholar
  14. 14.
    C. Carrillo-Carrion, S. Cardenas, B. M. Simonet, and M. Valcarcel, Chem. Commun., 5214 (2009).Google Scholar
  15. 15.
    L. Cao, J. Zhang, S. Ren, and S. Huang, Appl. Phys. Lett., 80, 4300 (2002).CrossRefGoogle Scholar
  16. 16.
    Q. Xiao and C. Xiao, Opt. Mater., 31, 455 (2008).CrossRefGoogle Scholar
  17. 17.
    E. H. Kisi and M. M. Elcombe, Acta Crystallogr. C, 45, 1867 (1989).CrossRefGoogle Scholar
  18. 18.
    G. Kresse and J. Furthmüller, Comput. Mater. Sci., 6, 15 (1996).CrossRefGoogle Scholar
  19. 19.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).CrossRefGoogle Scholar
  20. 20.
    G. Kresse and D. Joubert, Phys. Rev. B, 59, 1758 (1999).CrossRefGoogle Scholar
  21. 21.
    H. Modrow, S. Bucher, J. J. Rehr, and A. L. Ankudinov, Phys. Rev. B, 67, 035123 (2003).CrossRefGoogle Scholar
  22. 22.
    Y. Joly, Phys. Rev. B, 63, 125120 (2001).CrossRefGoogle Scholar
  23. 23.
    S. A. Guda, A. A. Guda, M. A. Soldatov, et al., J. Chem. Theory Comput., 11, 4512 (2015).CrossRefGoogle Scholar
  24. 24.
    A. L. Ankudinov, C. E. Bouldin, J. J. Rehr, et al., Phys. Rev. B, 65, 104107 (2002).CrossRefGoogle Scholar
  25. 25.
    Yu.Yu. Lurie, Handbook of Analytical Chemistry [in Russian], 5th ed., Khimiya, Moscow (1979).Google Scholar
  26. 26.
    Card No 401289, PDF-2, The International Centre for Diffraction Data; http://www.icdd.com.Google Scholar
  27. 27.
    Card No 750605, PDF-2, The International Centre for Diffraction Data; http://www.icdd.com.Google Scholar
  28. 28.
    L. Alamo-Nole, S. Bailon-Ruiz, O. Perales-Perez, et al., Anal. Methods, 4, 3127 (2012).CrossRefGoogle Scholar
  29. 29.
    G. Murugadoss, J. Lumin., 131, 2216 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. N. Kravtsova
    • 1
  • A. P. Budnik
    • 1
  • I. A. Pankin
    • 1
  • T. A. Lastovina
    • 1
  • A. L. Bugaev
    • 1
  • L. D. Popov
    • 1
  • M. A. Soldatov
    • 1
  • V. V. Butova
    • 1
  • A. V. Soldatov
    • 1
  1. 1.International Research Center “Smart Materials”Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations