Skip to main content

Investigation of adamantane–diamond transformation. The radical mechanism of the formation of diamond nanoparticles under shock-wave action on adamantane

Abstract

The use of the modern installations with the synchrotron radiation allowed obtaining the information about the dynamics of rapid transformation of adamantane into diamond within 2 μs under shock-wave action with nanosecond time resolution. The yield of diamond was 30%. An explanation of adamantane-diamond transformation is proposed. Hydrogen evolved during adamantane decomposition easily diffuses over diamond lattice. However, during synthesis time (~1 μs) hydrogen does not have enough time to go out of diamond particles. Experiment was made at accelerate complex VEPP-3/VEPP-4.

This is a preview of subscription content, access via your institution.

References

  1. V. M. Titov, E. R. Pruuel, K. A. Ten, L. A. Lukyanchikov, L. A. Merzhievsky, B. P. Tolochko, V. V. Zhulanov, and L. I. Shekhtman, Fiz. Goreniya Vzryva, 47, No. 6, 3–15 (2011).

    CAS  Google Scholar 

  2. V. M. Titov, B. P. Tolochko, K. A. Ten, L. A. Lukyanchikov, and P. I. Zubkov, in: Proc. of the NATO ARW on Synthesis, Properties and Applications of Ultrananocrystalline Diamond, St. Petersburg, Russia, June 7-10, 2004, Springer (2005).

    Google Scholar 

  3. V. Aulchenko, S. Ponomarev, L. Shekhtman, V. Zhulanov, O. Evdokov, B. Tolochko, I. Zhogin, and K. Ten, Nucl. Instrum. Methods Phys. Res., Sect. A, 513, Nos. 1/2, 388–393 (2003).

    CAS  Article  Google Scholar 

  4. V. M. Titov, B. P. Tolochko, K. A. Ten, L. A. Lukyanchikov, and E. R. Pruuel, Diamond Relat. Mater., 16, No. 12, 2009–2013 (2007).

    CAS  Article  Google Scholar 

  5. D. I. Svergun and L. A. Feigin, X-Ray and Neutron Small-Angle Scattering [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  6. L. P. Orlenko (ed.), Physics of Explosion [in Russian], 3rd ed., vol. 1, FIZMATLIT, Moscow (2004).

    Google Scholar 

  7. S. D. Gilev and A. M. Trubachev, Zh. Tekh. Fiz., 71, No. 9, 123–127 (2001).

    Google Scholar 

  8. J. T. Mang, C. B. Skidmore, P. M. Howe, R. P. Hjelm, and T. P. Rieker, AIP Conf. Proc., 505, 699 (2000).

    CAS  Article  Google Scholar 

  9. K. V. Volkov, V. V. Danilenko, and V. I. Elin, Combust., Explos., Shock Waves, No. 3, 123–125 (1990).

    Google Scholar 

  10. A. N. Afanasenkov, V. M. Bogomolov, and I. M. Voskoboinikov, Prikl. Mekh. Tekh. Fiz., No. 4, 137–141 (1969).

    Google Scholar 

  11. I. M. Voskoboinikov, Combust., Explos., Shock Waves, No. 6, 119–126 (2003).

    Google Scholar 

  12. V. Vijayakumar, A. B. Carg, B. K. Godwal, and S. K. Sikka, J. Phys.: Condens. Matter, 13, 1961 (2001).

    CAS  Google Scholar 

  13. B. A. Kazansky, E. A. Shokova, and T. V. Korosteleva, Izv. Akad. Nauk SSSR, Ser. Khim., No. 11, 2640–2642 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Tolochko.

Additional information

Translated from Zhurnal Strukturnoi Khimii, Vol. 57, No. 7, pp. 1550-1557, September-October, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tolochko, B.P., Chernyshev, A.P., Bokhonov, B.B. et al. Investigation of adamantane–diamond transformation. The radical mechanism of the formation of diamond nanoparticles under shock-wave action on adamantane. J Struct Chem 57, 1469–1476 (2016). https://doi.org/10.1134/S0022476616070234

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616070234

Keywords

  • adamantane
  • tricyclo decane (C10H16)
  • synchrotron radiation
  • diamond
  • nanodiamond
  • ultrafine analysis
  • small-angle X-ray scattering
  • shock waves
  • detonation