Skip to main content
Log in

Structure and magnetic properties of pure and samarium doped magnetite nanoparticles

  • Applications of Synchrotron Radiation in Structural Chemistry
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

In this paper, a study of pure and doped samarium magnetite nanoparticles synthesized using a microwave synthesis in aqueous solution was performed. The shape, size and structure of the pure and samarium doped magnetite nanoparticles were determined by X-ray diffraction, transmission electron microscopy, X-ray absorption spectroscopy and Mössbauer spectroscopy. The magnetic properties of the nanoparticles were investigated using a vibrating sample magnetometer. It was found that the samarium doped magnetite nanoparticles were superparamagnetic with high saturation magnetization. The doping with a small amount of samarium allowed to reduce the size of nanoparticles, their size distribution, increase resistance to oxidation and improve their magnetic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. H. Reddy, J. L. Arias, J. Nicolas, and P. Couvreur, Chem. Rev., 112, No. 11, 5818–5878 (2012).

    Article  CAS  Google Scholar 

  2. A. K. Gupta and M. Gupta, Biomaterials, 26, 3995–4021 (2005).

    Article  CAS  Google Scholar 

  3. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Elst, and R. Muller, Chem. Rev., 108, 2064–2110 (2008).

    Article  CAS  Google Scholar 

  4. D. Ling, N. Lee, and T. Hyeon, Acc. Chem. Res., 48, No. 5, 1276–1285 (2015).

    Article  CAS  Google Scholar 

  5. C. Xu and S. Sun, Adv. Drug Delivery Rev., 65, 732–743 (2013).

    Article  CAS  Google Scholar 

  6. G. Liu, J. Gao, H. Ai, and X. Chen, Small, 9, 1533–1545 (2013).

    Article  CAS  Google Scholar 

  7. H. Markides, M. Rotherham, and A. J. El Haj, J. Nanomater., 2012, 614094 (2012).

    Article  Google Scholar 

  8. F. Alexis, E. M. Pridgen, R. Langer, and O. C. Farokhzad, Nanoparticle Technologies for Cancer Therapy. Handbook of Experimental Pharmacology, Springer, Berlin, Heidelberg (2010).

    Book  Google Scholar 

  9. S. Nie, Y. Xing, G. J. Kim, and J. W. Simons, Annu. Rev. Biomed. Eng., 9, 257–288 (2007).

    Article  CAS  Google Scholar 

  10. J. Klostergaard and C. E. Seeney, Nanomedicine: NBM, 8, S37–S50 (2012).

    CAS  Google Scholar 

  11. D. Yoo, J. H. Lee, T. H. Shin, and J. Cheon, Acc. Chem. Res., 44, 863–874 (2011).

    Article  CAS  Google Scholar 

  12. C. Chouly, D. Pouliquen, I. Lucet, J. J. Jeune, and P. Jallet, J. Microencapsulation, 13, No. 3, 245–255 (1996).

    Article  CAS  Google Scholar 

  13. C. Li, Nat. Mater., 13, 110–115 (2014).

    Article  CAS  Google Scholar 

  14. J. Xie, G. Liu, H. S. Eden, H. Ai, and X. Chen, Acc. Chem. Res., 44, No. 10, 883–892 (2011).

    Article  CAS  Google Scholar 

  15. W. Huan, C. Cheng, Y. Yang, H. Yuan, and Y. Li, J. Nanosci. Nanotechnol., 12, 4621–4634 (2012).

    Article  CAS  Google Scholar 

  16. Y. Liu and N. Zhang, Biomaterials, 33, 5363–5375 (2012).

    Article  CAS  Google Scholar 

  17. W. Wu, Q. He, and C. Jiang, Nanoscale Res. Lett., 3, 397–415 (2008).

    Article  CAS  Google Scholar 

  18. X. Wang, J. Zhuang, Q. Peng, and Y. Li, Nature, 437, 121–124 (2005).

    Article  CAS  Google Scholar 

  19. W. Zhang, F. Shen, and R. Hong, Particuology, 9, No. 2, 179–186 (2011).

    Article  CAS  Google Scholar 

  20. T. Iwasaki, R. Nakatsuka, K. Murase, H. Takata, H. Nakamura, and S. Watano, Int. J. Mol. Sci., 14, 9365–9378 (2013).

    Article  Google Scholar 

  21. A. B. Chin and I. I. Yaacob, J. Mater. Process. Technol., 191, No. 1, 235–237 (2007).

    Article  CAS  Google Scholar 

  22. S. Sun and H. Zeng, J. Am. Chem. Soc., 124, No. 28, 8204/8205 (2002).

    Article  Google Scholar 

  23. D. Ramimoghadam, S. Bagheri, and S. B. A. Hamid, J. Magn. Magn. Mater., 368, 207–229 (2014).

    Article  CAS  Google Scholar 

  24. C. Li, Y. Wei, A. Liivat, Y. Zhu, and J. Zhu, Mater. Lett., 107, 23–26 (2013).

    Article  CAS  Google Scholar 

  25. B. Ravel and M. Newville, J. Synchrotron Radiat., 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  26. R. E. Vandenberghe and E. De Grave, Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. 3, Plenum Press, N. Y. (1989), p. 59.

    Book  Google Scholar 

  27. M. A. Shipilin, I. N. Zakharov, A. M. Shipilin, and V. I. Bachurin, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 8, No. 3, 557–561 (2014).

    Article  CAS  Google Scholar 

  28. A. G. Roca, J. F. Marco, M. del Puerto Morales, and C. J. Serna, J. Phys. Chem., C, 111, 18577–18584 (2007).

  29. I. S. Lyubutin, C. R. Lin, Yu. V. Korzhetskiy, T. V. Dmitrieva, and R. K. Chiang, J. Appl. Phys., 034311 (2009).

    Google Scholar 

  30. B. Kalska-Szostko, M. Zubowska, and D. Satual, Acta Phys. Pol., A, 109, No. 3, 365 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Polozhentsev.

Additional information

Translated from Zhurnal Strukturnoi Khimii, Vol. 57, No. 7, pp. 1539-1549, September-October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polozhentsev, O.E., Kubrin, S.P., Butova, V.V. et al. Structure and magnetic properties of pure and samarium doped magnetite nanoparticles. J Struct Chem 57, 1459–1468 (2016). https://doi.org/10.1134/S0022476616070222

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616070222

Keywords

Navigation