Skip to main content
Log in

Local peculiarities of the nanocrystalline structure of ternary oxides Ln2Hf2O7 (Ln = Gd, Tb, Dy)

  • Applications of Synchrotron Radiation in Structural Chemistry
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The crystal, local and electronic structure of complex oxides Ln2Hf2O7 (Ln = Gd, Tb, Dy) formed as a result of annealing of amorphous mixed hydroxides LnHf(OH)7nH2O (precursors) have been studied using a set of modern local-sensitive techniques of structural analysis based on the interaction of synchrotron radiation with condensed matter (XAFS spectroscopy, PDF analysis, anomalous X-ray diffraction). It was shown that the thermal treatment of precursors in the temperature range 600-700°C/3 h induces the formation of nanocrystallites with the fluorite structure characterized by the considerable inequivalence of local surrounding of Ln3+ and Hf4+ cations. It was found that the cation ordering of the pyrochlore type takes place in nanocrystals of gadolinium hafnate Gd2Hf2O7 and terbium hafnate Tb2Hf2O7. The phase transition fluorite → pyrochlore goes through the formation of the pyrochlore nanodomains in the matrix of well-crystallized fluorite. In the case of Gd2Hf2O7 the formation of the pyrochlore local structure is completed at annealing temperature ~1000-1200°C/3 h and at ≥1300°C/3 h the pyrochlore phase is detected by the diffraction techniques. In Tb2Hf2O7 the process of the pyrochlore phase formation exhibits the more complex behavior. Nanocrystals of dysprosium hafnate Dy2Hf2O7 retain the structure of defect fluorite in the whole temperature range of the heat treatment (up to 1600°C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Subramanian, G. Aravamudan, and G. V. Subba Rao, Prog. Solid State Chem., 15, No. 2, 55 (1983).

  2. W. Pan, S. R. Phillpot, C. Wan, et al., MRS Bull., 32, No. 10, 917 (2012).

    Article  Google Scholar 

  3. A. V. Shlyakhtina and L. G. Shcherbakova, Russ. J. Electrochem., 48, No.1, 1 (2012).

  4. V. D. Risovany, A. V. Zakharov, E. M. Muraleva, et al., J. Nucl. Mater., 355, No. 1, 163 (2006).

    Article  CAS  Google Scholar 

  5. R. C. Ewing, W. J. Weber, and J. Lian, J. Appl. Phys., 95, No. 11, 5949 (2004).

    Article  CAS  Google Scholar 

  6. A. R. Cleave, Atomic Scale Simulations for Waste Forms Applications, Ph. D. Thesis, Imperial College, London, UK (2006).

    Google Scholar 

  7. J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Modern Phys., 82, No. 1, 53 (2010).

    Article  CAS  Google Scholar 

  8. E. R. Andrievskaya, J. Eur. Ceram. Soc., 28, No. 12, 2363 (2008).

    Article  CAS  Google Scholar 

  9. P. E. R. Blanchard, R. Clements, D. J. Kennedy, et al., Inorg. Chem., 51, No. 24, 13237 (2012).

    Article  CAS  Google Scholar 

  10. C. Karthik, T. J. Anderson, D. Gout, et al., J. Solid State Chem., 194, No. 1, 168 (2012).

    Article  CAS  Google Scholar 

  11. M. P. Saradhi, S. V. Ushakov, and A. Navrotsky, RSC Adv., 2, No. 8, 3328 (2012).

    Article  CAS  Google Scholar 

  12. N. A. Shabanova, V. V. Popov, and P. D. Sarkisov, Chemistry and Technology of Nanodispersed Oxides [in Russian], Akademkniga, Moscow (2006).

    Google Scholar 

  13. M. P. Moroz, Russ. Chem. Rev., 80, No. 4, 293 (2011).

    Article  CAS  Google Scholar 

  14. V. V. Popov, Formation and Evolution of Oxide Nanosytems Obtained by Hydrolytic Polycondensation [in Russian], Doctoral (Chem.) Dissertation, MUCTR, moscow (2011).

    Google Scholar 

  15. V. V. Popov, V. F. Petrunin, S. A. Korovin, et al., Russ. J. Inorg. Chem., 56, No. 10, 1538 (2011).

    Article  CAS  Google Scholar 

  16. V. V. Popov, Ya. V. Zubavichus, A. P. Menushenkov, et al., Russ. J. Inorg. Chem., 60, No. 1, 16 (2015).

    Article  CAS  Google Scholar 

  17. A. P. Hammersley, S. O. Svensson, M. Hanfland, et al., High Pressure Res., 14, Nos. 4-6, 235 (1996).

    Article  Google Scholar 

  18. V. Petricek, M. Dusek, and L. Palatinus, Z. Kristallogr., 229, No. 5, 345 (2014).

    CAS  Google Scholar 

  19. K. V. Klementev, J. Phys. D: Appl. Phys., 34, No. 2, 209 (2001).

    Article  CAS  Google Scholar 

  20. M. P. Newville, J. Synchrotron Radiat., 8, No. 2, 322 (2001).

    Article  CAS  Google Scholar 

  21. A. L. Ankudinov, C. Bouldin, J. J. Rehr, et al., Phys. Rev. B, 58, No. 12, 7565 (1998).

    Article  CAS  Google Scholar 

  22. X. Qiu, J. W. Thompson, and S. J. L. Billinge, J. Appl. Crystallogr., 37, No. 4, 678 (2004).

    Article  CAS  Google Scholar 

  23. C. L. Farrow, P. Juhas, J. W. Liu, et al., J. Phys.: Condens. Matter, 19, No. 33, 335219 (2007).

    CAS  Google Scholar 

  24. Ya. V. Zubavichus, Structural Characterization of Weakly Ordered Intercalation Compounds of Molybdenum Disulphide [in Russian], Doctoral (Chem.) Dissertation, INEOS RAS, Moscow (2001).

    Google Scholar 

  25. V. V. Popov, Ya. V. Zubavichus, V. F. Petrunin, et al., Glass Phys. Chem., 37, No. 5, 512 (2011).

    Article  CAS  Google Scholar 

  26. V. V. Popov, A. P. Menushenkov, Ya. V. Zubavichus, et al., Russ. J. Inorg. Chem., 58, No. 12, 1400 (2013).

    Article  CAS  Google Scholar 

  27. V. V. Popov, A. P. Menushenkov, Ya. V. Zubavichus, et al., Russ. J. Inorg. Chem., 59, No. 4, 279 (2014).

    Article  CAS  Google Scholar 

  28. C. R. Stanek, Atomic Scale Disorder in Fluorite and Fluorite Related Oxides, Ph. D. Thesis, Imperial College, London, UK (2003).

    Google Scholar 

  29. X. T. Zu, N. Li, and F. Gao, J. Appl. Phys., 104, 043517 (2008).

    Article  Google Scholar 

  30. K. V. Klementiev; http://www.cells.es/old/Beamlines/CLAESS/software/xanda.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Menushenkov.

Additional information

Translated from Zhurnal Strukturnoi Khimii, Vol. 57, No. 7, pp. 1529-1538, September-October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menushenkov, A.P., Popov, V.V., Zubavichus, Y.V. et al. Local peculiarities of the nanocrystalline structure of ternary oxides Ln2Hf2O7 (Ln = Gd, Tb, Dy). J Struct Chem 57, 1450–1458 (2016). https://doi.org/10.1134/S0022476616070210

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616070210

Keywords

Navigation