Skip to main content
Log in

Towards the optimization of carbon nanotube properties via in situ and ex situ studies of the growth mechanism

  • Applications of Synchrotron Radiation in Structural Chemistry
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The synthesis conditions of multi-walled carbon nanotubes (MWCNTs) indirectly determine their application potential through the decisive role in the characteristics of individual tubes: diameter distribution, structure and defectiveness of graphene walls, the amount of metal impurities and amorphous carbon. In the present work, we have studied the influence of the catalyst composition and synthesis conditions on the diameter distribution and the structure of nanotube walls. We have observed the influence of the particle size for MWCNT synthesis (i.e. size effect) on catalytic activity by ex situ and in situ techniques: in situ X-ray diffraction on synchrotron radiation (SRXRD), gas chromatography, and ex situ transmission electron microscopy. The data obtained by in situ SRXRD are in agreement with the results collected using laboratory tubular fix-bed catalytic reactor allowing thereby extending the applicability of the approach. For the first time we have shown the increase of the fraction of graphene walls in the total MWCNT diameter with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Jorio, G. Dresselhaus, and M. S. Dresselhaus (eds.), Carbon Nanotubes, vol. 111 of Top. Appl. Phys., Springer, Berlin, Heidelberg (2008).

    Google Scholar 

  2. S. Bellucci, Phys. Status Solidi C, 2, 34–47 (2005).

    Article  CAS  Google Scholar 

  3. M. Meyyappan (ed.), Carbon Nanotubes: Science and Applications, CRC Press, Boca Raton, FL (2005).

    Google Scholar 

  4. E. G. Rakov, Usp. Khim., 70, 934–973 (2001).

    Article  Google Scholar 

  5. M. Endo, M. S. Strano, and P. M. Ajayan, in: Carbon Nanotubes, vol. 111 of Top. Appl. Phys., A. Jorio, G. Dresselhaus, and M. S. Dresselhaus (eds.), Springer, Berlin, Heidelberg (2007), pp. 13–62.

  6. E. G. Rakov, Usp. Khim., 82, 27–47 (2013).

    Article  Google Scholar 

  7. A. Szabó, C. Perri, A. Csató, G. Giordano, D. Vuono, and J. B. Nagy, Materials, 3092–3140 (2010).

    Google Scholar 

  8. V. Georgakilas, K. Kordatos, M. Prato, D. M. Guldi, M. Holzinger, and A. Hirsch, J. Am. Chem. Soc., 124, 760/761 (2002).

    Google Scholar 

  9. Z. Shao, M. Pang, W. Xia, M. Muhler, and C. Liang, J. Energy Chem., 22, 804–810 (2013).

    Article  CAS  Google Scholar 

  10. I. Mazov, D. Krasnikov, A. Stadnichenko, V. Kuznetsov, A. Romanenko, O. Anikeeva, and E. Tkachev, J. Nanotechnol., 2012, 1–5 (2012).

    Article  Google Scholar 

  11. Y. A. Kim, T. Hayashi, Y. Fukai, M. Endo, T. Yanagisawa, and M. S. Dresselhaus, Chem. Phys. Lett., 355, 279–284 (2002).

    Article  CAS  Google Scholar 

  12. V. L. Kuznetsov, K. V. Elumeeva, A. V. Ishchenko, N. Y. Beylina, A. A. Stepashkin, S. I. Moseenkov, L. M. Plyasova, I. Y. Molina, A. I. Romanenko, O. B. Anikeeva, and E. N. Tkachev, Phys. Status Solidi B, 247, 2695–2699 (2010).

    Article  CAS  Google Scholar 

  13. A. Dupuis, Prog. Mater. Sci., 50, 929–961 (2005).

    Article  CAS  Google Scholar 

  14. V. Kuznetsov, S. Bokova-Sirosh, S. Moseenkov, A. Ishchenko, D. Krasnikov, M. Kazakova, A. Romanenko, E. Tkachev, and E. Obraztsova, Phys. Status Solidi B, 251, 2444–2450 (2014).

    Article  CAS  Google Scholar 

  15. K. J. MacKenzie, O. M. Dunens, and A. T. Harris, Ind. Eng. Chem. Res., 49, 5323–5338 (2010).

    Article  CAS  Google Scholar 

  16. L. S. Ying, M. A. bin Mohd Salleh, H. b. Mohamed Yusoff, S. B. Abdul Rashid, J. b. Abd. Razak, J. Ind. Eng. Chem., 17, 367–376 (2011).

    Article  CAS  Google Scholar 

  17. K. Hata, Science, 306, 1362–1364 (2004).

    Article  CAS  Google Scholar 

  18. K. Nemeth, Z. Nemeth, D. Fejes, B. Reti, Z. Balogh, and K. Hernadi, Phys. Status Solidi B, 248, No. 11, 2471–2474 (2011).

    Article  CAS  Google Scholar 

  19. S. Helveg, C. López-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, and J. K. Nørskov, Nature, 427, 426–429 (2004).

    Article  CAS  Google Scholar 

  20. M. Moseler, F. Cervantes-Sodi, S. Hofmann, G. Csányi, and A. C. Ferrari, ACS Nano, 4, 7587–7595 (2010).

    Article  CAS  Google Scholar 

  21. C. Mattevi, C. T. Wirth, S. Hofmann, R. Blume, M. Cantoro, C. Ducati, C. Cepek, A. Knop-Gericke, S. Milne, C. Castellarin-Cudia, S. Dolafi, A. Goldoni, R. Schloegl, and J. Robertson, J. Phys.Chem. C, 112, 12207–12213 (2008).

    Article  CAS  Google Scholar 

  22. S. Hofmann, R. Sharma, C. Ducati, G. Du, C. Mattevi, C. Cepek, M. Cantoro, S. Pisana, A. Parvez, F. Cervantes-Sodi, A. C. Ferrari, R. Dunin-Borkowski, S. Lizzit, L. Petaccia, A. Goldoni, and J. Robertson, Nano Lett., 7, 602–608 (2007).

    Article  CAS  Google Scholar 

  23. K. Nishimura, N. Okazaki, L. Pan, and Y. Nakayama, Jpn. J. Appl. Phys., 43, L471–L474 (2004).

    Article  CAS  Google Scholar 

  24. V. L. Kuznetsov, D. V. Krasnikov, A. N. Schmakov, and K. V. Elumeeva, Phys. Status Solidi B, 249, 2390–2394 (2012).

    Article  CAS  Google Scholar 

  25. C. T. Wirth, B. C. Bayer, A. D. Gamalski, S. Esconjauregui, R. S. Weatherup, C. Ducati, C. Baehtz, J. Robertson, and S. Hofmann, Chem. Mater., 24, 4633–4640 (2012).

    Article  CAS  Google Scholar 

  26. D. V. Krasnikov, A. N. Shmakov, V. L. Kuznetsov, K. V. Elumeeva, and A. V. Ishchenko, Izv. Ross. Akad. Nauk, Ser. Fiz., 77, No. 2, 177–180 (2013).

    Google Scholar 

  27. K. V. Elumeeva, Catalytic Preparation of Multi-Wall Carbon Nanotubes with Controlled Properties, Cand. Sci. (Chem.) Dissertation, Institute of Catalysis SB RAS, Novosibirsk (2012).

    Google Scholar 

  28. M. Popa, Solid State Ionics, 151, 251–257 (2002).

    Article  CAS  Google Scholar 

  29. V. M. Aulchenko, O. V. Evdokov, V. D. Kutovenko, B. Y. Pirogov, M. R. Sharafutdinov, V. M. Titov, B. P. Tolochko, A. V. Vasiljev, I. A. Zhogin, and V. V. Zhulanov, Nucl. Instrum. Methods Phys. Res., Sect. A, 603, 76–79 (2009).

    Article  CAS  Google Scholar 

  30. F. Le Normand, V. Švrcek, A. Senger, T. Dintzer, and C. Pham-Huu, J. Phys. Chem. C, 113, 14879–14892 (2009).

    Article  CAS  Google Scholar 

  31. L. Ni, K. Kuroda, L.-P. Zhou, T. Kizuka, K. Ohta, K. Matsuishi, and J. Nakamura, Carbon, 44, 2265–2272 (2006).

    Article  CAS  Google Scholar 

  32. S. L. Pirard, S. Douven, C. Bossuot, G. Heyen, and J.-P. Pirard, Carbon, 45, 1167–1175 (2007).

    Article  CAS  Google Scholar 

  33. V. L. Kuznetsov, A. N. Usoltseva, and Yu. V. Butenko, Kinet. Katal., 44, No. 5, 791–800 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Krasnikov.

Additional information

Translated from Zhurnal Strukturnoi Khimii, Vol. 57, No. 7, pp. 1515-1522, September-October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnikov, D.V., Shmakov, A.N., Kuznetsov, V.L. et al. Towards the optimization of carbon nanotube properties via in situ and ex situ studies of the growth mechanism. J Struct Chem 57, 1436–1443 (2016). https://doi.org/10.1134/S0022476616070192

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616070192

Keywords

Navigation