Skip to main content
Log in

PtPd-nanoparticles supported by new carbon materials

  • Applications of Synchrotron Radiation in Structural Chemistry
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Nanocomposites based on PtPd nanoparticles with chemical ordering like disordered solid solution on surface of multilayer graphene have been prepared through thermal shock of mechanically obtained mixture of double complex salt [Pd(NH3)4][PtCl6] and different carbon materials–exfoliated graphite, graphite oxide and graphite fluoride. An effect of original carbon precursors on formation of PtPd bimetallic nanoparticles was studied using X-ray absorption spectroscopy (XAFS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). It was shown that the distribution of bimetallic nanoparticles over the multilayer graphene surface as well as the particles size distribution is controlled by the graphene precursors. For all nanocomposites, the surface of the nanoparticles was found to be Pd-enriched. In case when the thermal exfoliated graphite and graphite oxide were used as the graphene precursors a thin graphitized layer covered the nanoparticles surface. Such a graphitized layer was not observed in the nanocomposite, which used the fluorinated graphite as the precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Mulvaney, Langmuir, 12, 788–800 (1996).

    Article  CAS  Google Scholar 

  2. R. Kou and Yu. Shao, Electrochem. Commun., 11, 954–957 (2009).

    Article  CAS  Google Scholar 

  3. S. Liua, J. Wanga, J. Zeng, J. Ou, Z. Li, X. Liua, and S. Yang, J. Power Sources, 195, 4628–4633 (2010).

    Article  Google Scholar 

  4. Y. Shao, S. Zhanga, C. Wang, Z. Nie, J. Liu, Y. Wang, and Y. Lin, J. Power Sources, 195, 4600–4605 (2010).

    Article  CAS  Google Scholar 

  5. C. V. Rao, A. L. Mohana Reddy, Y. Ishikawa, and P. M. Ajayan, Carbon, 49, 931–936 (2011).

    Article  CAS  Google Scholar 

  6. P. V. Kamat, J. Phys. Chem. Lett., 2, 242–251 (2011).

    Article  CAS  Google Scholar 

  7. C. V. Rao, C. R. Cabrera, and Y. Ishikawa, J. Phys. Chem. C, 115, 21963–21970 (2011).

    Article  Google Scholar 

  8. Yu. Lu, Yu. Jiang, H. Wu, and W. Chen, J. Phys. Chem. C, 117, 2926–2938 (2013).

    Article  CAS  Google Scholar 

  9. X. Liu, D. Wang, and Y. Li, Nano Today, 7, 448–466 (2012).

    Article  CAS  Google Scholar 

  10. P. V. Kamat, J. Phys. Chem. Lett., 1, 520–527 (2010).

    Article  CAS  Google Scholar 

  11. E. Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura, and I. Honma, Nano Lett., 9, 2255–2259 (2009).

    Article  CAS  Google Scholar 

  12. E. D. Graifer, V. G Makotchenko, A. S. Nazarov, S.-G. Kim, and V. E. Fedorov, Russ. Chem. Rev., 80, 784–804 (2011).

    Google Scholar 

  13. T. Asanova, I. Asanov, A. Zadesenets, E. Filatov, P. Plyusnin, E. Gerasimov, and S. Korenev, J. Therm. Anal. Calorim., 123, 1183–1195 (2016).

    Article  CAS  Google Scholar 

  14. L. G. Bulusheva, V. A. Tur, E. O. Fedorovskaya, I. P. Asanov, D. Pontiroli, M. Riccò, and A. V. Okotrub, Carbon, 78, 137–146 (2014).

    Article  CAS  Google Scholar 

  15. A. S. Nazarov, N. F. Yudanov, and V. V. Lisiza, Zh. Neorg. Khim., 21, 2273–2276 (1976).

    CAS  Google Scholar 

  16. B. Ravel and M. Newville, J. Synchrotron Radiat., 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  17. M. Newville, J. Synchrotron Radiat., 8, 322–324 (2001).

    Article  CAS  Google Scholar 

  18. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal., 43, 689–713 (2011).

    Article  CAS  Google Scholar 

  19. I. P. Asanov, P. P. Semyannikov, and V. M. Paasonen, in: New Trends in Intercalation Compounds for Energy Storage, C. Julien, J. P. Pereira-Ramos, and A. Momchilov (eds.), Springer, Netherlands (2002), pp. 447–454.

  20. J. S. Hammond, J. Electroanal. Chem., 78, 55–69 (1977).

    Article  CAS  Google Scholar 

  21. H. Wang, T. Maiyalagan, and X. Wang, ACS Catal., 2, 781–794 (2012).

    Article  CAS  Google Scholar 

  22. Y. Sato, R. Hagiwara, and Y. Ito, Carbon, 39, 951–956 (2001).

    Article  Google Scholar 

  23. V. M. Paasonen and A. S. Nazarov, Neorg. Mater., 37, 544–548 (2001).

    Article  Google Scholar 

  24. V. G. Makotchenko, D. V. Pinakov, and V. A. Logvinenko, Chem. Asian J., 10, 1761–1767 (2015).

    Article  CAS  Google Scholar 

  25. Y. V. Fedoseeva, A. V. Okotrub, I. P. Asanov, D. V. Pinakov, G. N. Chekhova, V. A. Tur, P. E. Plyusnin, D. V. Vyalikh, and L. G. Bulusheva, Phys. Status Solidi B, 251, 1–6 (2014).

    Article  Google Scholar 

  26. J. Zheng, H.-T. Liu, B. Wu, C.-A. Di, Y.-L. Guo, T. Wu, G. Yu, Y.-Q. Liu, and D.-B. Zhu, Sci. Rep., 2, 662 (2012).

    Google Scholar 

  27. S. Fung, J. Catal., 58, 454–469 (1979).

    Article  CAS  Google Scholar 

  28. S. M. Davis, J. Catal., 117, 432–446 (1989).

    Article  CAS  Google Scholar 

  29. A. M. Venezia, Catal. Today, 77, 359–370 (2003).

    Article  CAS  Google Scholar 

  30. S. Tougaard, J. Vac. Sci. Technol. A, 21, 1081–1086 (2003).

    Article  CAS  Google Scholar 

  31. S. Tougaard, J. Vac. Sci. Technol. A, 23, 741–745 (2005).

    Article  CAS  Google Scholar 

  32. S. Tougaard, J. Vac. Sci. Technol. A, 31, 031503–031508 (2013).

    Article  Google Scholar 

  33. W. Qian, R. Hao, J. Zhou, M. Eastman, B. A. Manhat, Q. Sun, A. M. Goforth, J. Jiao, Carbon, 52, 595–604 (2013).

    Article  CAS  Google Scholar 

  34. H. J. Huang, D. P. Sun, and X. Wang, Chin. Sci. Bull., 57, 3071–3079 (2012).

    Article  CAS  Google Scholar 

  35. M. Acik, G. Lee, C. Mattevi, A. Pirkle, R. M. Wallance, M. Chhowalla, K. Cho, and Y. Chabal, J. Phys. Chem. C, 115, 19761–19781 (2011).

    Article  CAS  Google Scholar 

  36. V. Dubois, K. Cuerin, Y. Ahmad, N. Batisse, M. Mar, L. Frezet, W. Hourani, J. L. Bubendorff, J. Parmentier, S. Hajjar-Garreau, and L. Simon, Carbon, 77, 688–704 (2014).

    Article  CAS  Google Scholar 

  37. A. Maiti and A. Ricca, Chem. Phys. Lett., 395, 7–11 (2004).

    Article  CAS  Google Scholar 

  38. F. Banhart, Nanoscale, 1, 201–213 (2009).

    Article  CAS  Google Scholar 

  39. R. Lamber, N. Jaeger, and G. Schulz-Ekloff, Surf. Sci., 227, 15–23 (1990).

    Article  CAS  Google Scholar 

  40. T. Oku, G. Schmid, and K. Suganuma, J. Mater. Chem., 8, 2113–2117 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Asanova.

Additional information

Translated from Zhurnal Strukturnoi Khimii, Vol. 57, No. 7, pp. 1475-1484, September-October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asanova, T.I., Asanov, I.P., Tur, V.A. et al. PtPd-nanoparticles supported by new carbon materials. J Struct Chem 57, 1398–1406 (2016). https://doi.org/10.1134/S0022476616070143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616070143

Keywords

Navigation