Skip to main content
Log in

Modelling of substitutional defects in the structure of Ti-bearing hibonite

  • Applications of Synchrotron Radiation in Structural Chemistry
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A local atomic structure around titanium positions in Ti-bearing hibonite (CaAl12O19) has been studied. The structural models of substitution of different substitution defects Ti–Al in hibonite by titanium atoms have been considered. Optimization of structural models of hibonite has been done by means of density functional theory calculations using pseudopotential approximation as implemented in VASP 5.3 code. Gibbs free energies analysis has shown that models of substitution of M2 and M4 aluminum positions by titanium atoms are the most probable. For the most probable structural models of Ti-bearing hibonite theoretical X-ray absorption near-edge structure (XANES) spectra near the titanium K edge have been calculated. Significant differences in theoretical XANES spectra calculated for different structural models with non-optimized and optimized atomic structure have been demonstrated. Changes in the intensity of pre-edge structure of TiK XANES spectra for different substitution models of aluminum by titanium have been observed which relate to different titanium coordination in structural models. Energy shift of spectral features towards lower energy for optimized models implies increase of interatomic distances in local surroundings of Ti absorbing atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Amelin, A. N. Krot, A. A. Ulyanov, and I. D. Hutcheon, Science, 297, 1678 (2002).

    Article  CAS  Google Scholar 

  2. A. T. Anderson, A. V. Crewe, J. R. Goldsmith, et al., Science, 167, 587 (1970).

    Article  CAS  Google Scholar 

  3. H. Curien, C. Guillemin, J. Orcel, and M. Sternberg, C. R. Acad. Sci., Paris, 2845 (1956).

    Google Scholar 

  4. K. Kato and H. Saalfeld, Neues Jahrb. Mineral., Abh., 109, 192 (1968).

    CAS  Google Scholar 

  5. A. A. Utsunomiya, K. Tanaka, H. Morikawa, et al., J. Solid State Chem., 75, 197 (1988).

    Article  CAS  Google Scholar 

  6. V. V. Bermanec, D. Holtstam, D. Sturman, et al., Can. Mineral., 34, 1287 (1996).

    CAS  Google Scholar 

  7. A. M. Hofmeister, B. Wopenka, and A. J. Locock, Geochim. Cosmochim. Acta, 68, 4485 (2004).

    Article  CAS  Google Scholar 

  8. M. Nagashima, T. Armbruster, and T. Hainschwang, Mineral. Mag., 74, 871 (2010).

    Article  CAS  Google Scholar 

  9. R. G. Burns and V. M. Burns, J. Geophys. Res., 89, 313 (1984).

    Article  Google Scholar 

  10. J. R. Beckett, D. Live, F.-D. Tsay, et al., Geochim. Cosmochim. Acta, 52, 1479 (1988).

    Article  CAS  Google Scholar 

  11. P. M. Doyle, P. F. Schofield, A. J. Berry, et al., Am. Mineral., 99, 1369 (2014).

    Article  Google Scholar 

  12. G. Bunker, Introduction to XAFS. A Practical Guide to X-ray Absorption Fine Structure Spectroscopy, Cambridge University Press, UK (2010).

  13. G. Kresse and J. Furthmüller, Phys. Rev. B, 54, No. 16, 11169 (1996).

    Article  CAS  Google Scholar 

  14. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).

    Article  CAS  Google Scholar 

  15. D. M. Bylander, L. Kleinmann, and S. Lee, Phys. Rev. B, 42, 1394 (1990).

    Article  CAS  Google Scholar 

  16. E. L. Frank, W. J. Daniel, W. Boisvert, et al., Conf. Proc. (2010).

  17. J. J. Rehr, J. J. Kas, F. D. Vila, et al., Phys. Chem. Chem. Phys., 12, 5503 (2010).

    Article  CAS  Google Scholar 

  18. J. J. Rehr, J. J. Kas, M. P. Prange, et al., C. R. Phys., 10, No. 6, 548 (2009).

    Article  CAS  Google Scholar 

  19. Y. Joly, Phys. Rev. B, 63, 125120 (2001).

    Article  Google Scholar 

  20. S. A. Guda, A. A. Guda, M. A. Soldatov, et al., J. Chem. Theor. Comput., 11, No. 9, 4512–4521 (2015).

    Article  CAS  Google Scholar 

  21. A. N. Kravtsova, S. A. Suchkova, M. B. Fayn, and A. V. Soldatov, J. Struct. Chem., 57, No. 3, 491 (2016).

    Article  CAS  Google Scholar 

  22. A. N. Kravtsova, K. A. Lomachenko, A. V. Soldatov, et al., J. Electron Spectrosc. Relat. Phenom., 195, 189 (2014).

    Article  CAS  Google Scholar 

  23. I. S. Rodina, A. N. Kravtsova, A. V. Soldatov, and A. J. Berry, Opt. Spectrosc., 111, No. 6, 936 (2011).

    Article  CAS  Google Scholar 

  24. I. S. Rodina, A. N. Kravtsova, A. V. Soldatov, et al., Opt. Spectrosc., 115, No. 6, 858 (2013).

    Article  CAS  Google Scholar 

  25. A. Bianconi, M. Dell Ariccia, A. Gargano, and C. R. Natoli, in: Bond Length Determination Using XANES, EXAFS and Near Edge Structure, A. Bianconi, A. Incoccia, and S. Stipcich (eds.), Springer, Berlin (1987), p. 57.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kravtsova.

Additional information

Translated from Zhurnal Strukturnoi Khimii, Vol. 57, No. 7, pp. 1445-1452, September-October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankin, I.A., Kravtsova, A.N., Polozhentsev, O.E. et al. Modelling of substitutional defects in the structure of Ti-bearing hibonite. J Struct Chem 57, 1369–1376 (2016). https://doi.org/10.1134/S0022476616070106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616070106

Keywords

Navigation