Skip to main content
Log in

Theoretical investigation of the spectroscopic constants of aluminum carbide in the ground state

  • Brief Communications
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The previous multireference configuration interaction (MRCI) results show that the ground state 4Σ of the AlC molecule is basically single configurational in nature. In this paper, the potential energy curve (PEC) of 4Σ is calculated with the Brueckner coupled-cluster doubles with perturbative triple and quadruple corrections [BD(TQ)]. Basis set extrapolations with the correlation-consistent basis sets are performed. The efficiency and precision of the methods with different basis sets are compared. The calculated spectroscopic constants are in excellent agreement with the experimental ones. Our results reveal that the correlation from higher order excitations than doubles is very important for this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Co., New York (1979).

    Book  Google Scholar 

  2. L. B. Knight, S. T. Cobranchi, J. O. Herlong, and C. A. Arrington, J. Chem. Phys., 92, 5856–5866 (1990).

    Article  CAS  Google Scholar 

  3. C. R. Brazier, J. Chem. Phys., 98, 2790–2797 (1993).

    Article  CAS  Google Scholar 

  4. A. Thoma, N. Caspary, B. E. Wurfel, and V. E. Bondybey, J. Chem. Phys., 98, 8458–8461 (1993).

    Article  CAS  Google Scholar 

  5. A. V. Zaitsevskii, A. I. Dement’ev, and G. N. Zviadadze, J. Less-Common Met., 117, 237–240 (1986).

    Article  CAS  Google Scholar 

  6. C. W. Bauschlicher, S. R. Langhoff, and G. M. Pettersson, J. Chem. Phys., 89, 5747–5752 (1988).

    Article  CAS  Google Scholar 

  7. G. L. Gutsev, P. Jena, and R. J. Bartlett, J. Chem. Phys., 110, 2928–2935 (1999).

    Article  CAS  Google Scholar 

  8. D. Tzeli and A. Mavridis, J. Phys. Chem. A, 105, 1175–1184 (2001).

    Article  CAS  Google Scholar 

  9. D. Tzeli and A. Mavridis, J. Phys. Chem. A, 105, 7672–7685 (2001).

    Article  CAS  Google Scholar 

  10. A. Largo, P. Redondo, and C. Barrientos, J. Phys. Chem. A, 106, 4217–4225 (2002).

    Article  CAS  Google Scholar 

  11. S. Midda and A. K. Das, J. Mol. Struct.: THEOCHEM, 633, 67–71 (2003).

    Article  CAS  Google Scholar 

  12. R. J. Le Roy, LEVEL8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels. Research Report CP-663, University of Waterloo, Waterloo, Ontario, Canada (2007) http://leroy.uwaterloo.ca/programs.

    Google Scholar 

  13. K. Raghavachari, J. A. Pople, E. S. Replogle, and M. Head-Gordon, J. Phys. Chem., 94, 5579–5586 (1990).

    Article  CAS  Google Scholar 

  14. T. A. Ruden, T. Helgaker, P. Jørgensen, and J. Olsen, Chem. Phys. Lett., 371, 62–67 (2003).

    Article  CAS  Google Scholar 

  15. T. H. Dunning, J. Phys. Chem., 90, 1007–1023 (1989).

    Article  CAS  Google Scholar 

  16. R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys., 96, 6796–6806 (1992).

    Article  CAS  Google Scholar 

  17. D. E. Woon and T. H. Dunning, J. Chem. Phys., 99, 1914–1929 (1993).

    Article  CAS  Google Scholar 

  18. A. Halkier, T. Helgaker, P. Jorgensen, W. Klopper, H. Koch, and J. Olsen, Chem. Phys. Lett., 286, 243–252 (1998).

    Article  CAS  Google Scholar 

  19. T. Müller, M. Dallos, H. Lischka, Z. Dubrovay, and P. G. Szalay, Theor. Chem. Acc., 105, 227–243 (2001).

    Article  Google Scholar 

  20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision B.02, Gaussian Inc., Pittsburgh PA (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Liu.

Additional information

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 57, No. 5, pp. 1066-1069, June-July, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, L., Qian, Z. et al. Theoretical investigation of the spectroscopic constants of aluminum carbide in the ground state. J Struct Chem 57, 1015–1018 (2016). https://doi.org/10.1134/S002247661605022X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247661605022X

Keywords

Navigation