Skip to main content
Log in

Structures and magnetic properties of Ni n (n = 36-40) clusters from first-principles calculations

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A genetic algorithm (GA) coupled with a tight-binding (TB) interatomic potential is used to search for the low-energy structures of medium-sized Ni n (n = 36-40) clusters. Structural candidates obtained from our GA search are further optimized with first-principles calculations. The medium-sized nickel clusters ranging from 36 to 40 atoms are found to favor the double-icosahedron-based structures with a Ni7 core (a pentagonal bipyramidal structure) except Ni38 cluster. The lowest-energy structure of Ni38 can be considered to be a magic cluster, which is a typical face-centered cubic structure with large stability and magnetic moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Schmid, M. Bäumle, M. Geerkens, I. Heim, C. Osemann, and T. Sawitowski, Chem. Soc. Rev., 28, 179–185 (1999).

    Article  CAS  Google Scholar 

  2. J. D. Aiken and R. G. Finke, J. Mol. Catal. A: Chem., 145, 1–44 (1999).

  3. P. Migowski and J. Dupont, Chem. Eur. J., 13, 32–39 (2007).

    Article  CAS  Google Scholar 

  4. S. Lecoultre, A. Rydlo, J. Buttet, C. Felix, S. Gilb, and W. Harbich, J. Chem. Phys., 134, 184504(1)-(6) (2011).

    Article  CAS  Google Scholar 

  5. M. Itoh, V. Kumar, T. Adschiri, and Y. Kawazoe, J. Chem. Phys., 131, 174510(1)-(19) (2009).

    Article  Google Scholar 

  6. X. S. Xu, S. Y. Yin, R. Moro, and W. A. de Heer, Phys. Rev. Lett., 95, 237209(1)-(4) (2005).

    Article  Google Scholar 

  7. P. Gruene, D. M. Rayner, B. Redlich, A. F. G. van der Meer, J. T. Lyon, G. Meijer, and A. Fielicke, Science, 321, 674–676 (2008).

    Article  CAS  Google Scholar 

  8. J. Li, X. Li, H. J. Zhai, and L. S. Wang, Science, 299, 864–867 (2003).

    Article  CAS  Google Scholar 

  9. Q. M. Ma, Z. Xie, B. R. Wang, Y. Liu, and Y. C. Li, Solid State Commun., 151, 806–810 (2011).

    Article  CAS  Google Scholar 

  10. S. Datta, M. Kabir, and T. S. Dasguptal, Phys. Rev. B, 84, 075429(1)-(8) (2011).

    Article  Google Scholar 

  11. H. M. Duan, X. G. Gong, and Q. Q. Zheng, J. Appl. Phys., 89, 7308–7310 (2001).

    Article  CAS  Google Scholar 

  12. Y. H. Yao, X. Gu, M. Ji, X. G. Gong, and D. S. Wang, Phys. Lett. A, 360, 629–631 (2007).

    Article  CAS  Google Scholar 

  13. X. G. Wan, L. Zhou, J. M. Dong, T. K. Lee, and D. S. Wang, Phys. Rev. B, 69, 174414(1)-(14) (2004).

    Article  Google Scholar 

  14. R. Singh and P. Kroll, Phys. Rev. B, 78, 245404(1)-(9) (2008).

    Article  Google Scholar 

  15. F. Aguilera-Granja, S. Bouarab, M. J. López, A. Vega, J. M. Montejano-Carrizales, M. P. Iñiguez, and J. A. Alonso, Phys. Rev. B, 57, 12469–12475 (1998).

    Article  CAS  Google Scholar 

  16. V. G. Grigoryan and M. Springborg, Phys. Chem. Chem. Phys., 3, 5135–5139 (2001).

    Article  CAS  Google Scholar 

  17. Z. El-Bayyari, J. Mol. Struct.: THEOCHEM, 716, 165–174 (2005).

    Article  CAS  Google Scholar 

  18. W. Song, W. C. Lu, Q. J. Zang, C. Z. Wang, and K. M. Ho, Int. J. Quantum Chem., 112, 1717–1724 (2012).

    Article  CAS  Google Scholar 

  19. W. Song, W. C. Lu, Q. J. Zang, and Q. X. Li, Chem. Res. Chin. Univ., 28, No. 2, 291–294 (2012).

    CAS  Google Scholar 

  20. W. Song, W. C. Lu, C. Z. Wang, and K. M. Ho, Comput. Theor. Chem., 978, 41–46 (2011).

    Article  CAS  Google Scholar 

  21. M. R. Peterson, T. E. Doom, and M. L. Raymer, Lect. Notes Comput. Sci. Eng., 3102, 426–437 (2004).

    Article  Google Scholar 

  22. C. Z. Wang and K. M. Ho, Handb. Mater. Model., 1, 307 (2005).

    Article  Google Scholar 

  23. C. Z. Wang, B. C. Pan, and K. M. Ho, J. Phys.: Condens. Matter., 11, 2043–2048 (1999).

    CAS  Google Scholar 

  24. M. S. Tang, C. Z. Wang, C. T. Chan, et al., Phys. Rev. B, 53, 979 (1996).

    Article  CAS  Google Scholar 

  25. a)_G. Kresse and J. Hafner, Phys. Rev. B, 47, 558–561 (1993)

    Article  CAS  Google Scholar 

  26. G. Kresse and J. Furthmuller, Phys. Rev. B, 54, 11169 (1996).

    Article  CAS  Google Scholar 

  27. E. K. Parks, G. C. Niemann, K. P. Kerns, and S. J. Riley, J. Chem. Phys., 107, 1861–1865 (1997).

  28. Y. Xiang, D. Y. Sun, and X. G. Gong, J. Phys. Chem. A, 104, 2746–2751 (2000).

  29. J. T. Lau, A. Föhlisch, M. Martins, R. Nietubyc, M. Reif, and W. Wurth, New J. Phys., 4, 98(1)-(4) (2002).

    Article  Google Scholar 

  30. S. E. Apsel, J. W. Emmert, J. Deng, and L. A. Bloomfield, Phys. Rev. Lett., 76, 1441–1444 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Song.

Additional information

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 57, No. 5, pp. 916-922, June-July, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Wang, B., Guo, K. et al. Structures and magnetic properties of Ni n (n = 36-40) clusters from first-principles calculations. J Struct Chem 57, 868–874 (2016). https://doi.org/10.1134/S0022476616050048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476616050048

Keywords

Navigation